Способ комплексного определения теплофизических характеристик материалов



Способ комплексного определения теплофизических характеристик материалов

 


Владельцы патента RU 2424505:

Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ГОУ ВПО ТГТУ (RU)

Изобретение относится к области теплофизических измерений. В способе воздействуют тепловым импульсом на поверхность образца. Измерение температуры осуществляют в трех точках, располагаемых по перпендикуляру к линейному источнику тепла. При этом регистрируют момент времени, при котором усиленный сигнал второй термопары станет равен сигналу первой термопары, а также значение температуры в третьей точке в этот момент времени, искомые характеристики рассчитывают по предлагаемым формам. Техническим результатом предлагаемого изобретения является повышение точности измерений. 1 ил.

 

Предлагаемое изобретение относится к области теплофизических измерений методами мгновенного источника тепла.

Известен метод мгновенного источника тепла для комплексного определения теплофизических характеристик материалов (Чудновский А.Ф. Теплофизические характеристики дисперсных материалов. М., Физматгиз, 1962 г., 456 с.).

Недостатком этого метода является сравнительно длительное проведение эксперимента, а также большая погрешность определения экстремума температурной кривой вследствие «размытости» характера термограммы нагрева в области ее максимальных значений.

Известен способ комплексного определения теплофизических характеристик материалов (Авт.свид. №1635099 SU Al, G01N 25/18, 15.03.91 г., Бюл.№10), принятый за прототип, заключающийся в нагреве плоской поверхности материала импульсным источником тепла постоянной мощности, измерением в заданный момент времени температуры в двух точках, расположенных по перпендикуляру к линейному импульсному источнику тепла, при этом измеряют температуру в дополнительной точке, расположенной между двумя первыми, температуру в которых регистрируют в момент достижения максимальной температуры в дополнительной точке и последующим расчетом искомых характеристик по формулам.

Недостатком этого способа является большая погрешность определения теплофизических характеристик материалов вследствие «размытости» характера изменения термограммы нагрева в дополнительной точке в области ее максимальных значений, соответственно значительная погрешность определения момента времени, соответствующего экстремуму температурной кривой.

Техническим результатом предлагаемого изобретения является повышение точности измерений.

На чертеже приведена схема для реализации предлагаемого способа.

На плоской поверхности полубесконечного в тепловом отношении материала установлен импульсный источник 1 тепла и датчики температуры с тремя термопарами 2, расположенными по перпендикуляру к линейному источнику тепла на поверхности исследуемого материала 3, при этом вторая термопара через усилитель и нуль-органа соединена по дифференциальной схеме с первой термопарой.

После подачи теплового импульса с энергией Q регистрируют момент времени, при котором усиленный сигнал второй термопары станет равным сигналу первой термопары, с помощью нуль - органа (условно не показано), а также значение температуры в третьей точке в этот момент времени.

Температура на поверхности материала описывается выражением:

где Q - количество тепла, выделяемое с единицы длины линейного источника тепла; τ - время; "a", λ - коэффициенты температуропроводности и теплопроводности; x, у - координаты.

Для момента времени τ1, соответствующего соотношению

где n - коэффициент усиления усилителя, подключенного входом к выходу второй термопары, а выходом соединенный по дифференциальной схеме через нуль-орган с выходом первой термопары.

В этом случае на основании соотношений (1) и (2) получим:

Использование данного изобретения позволяет повысить точность определения теплофизических характеристик материалов, т.к. регистрация наперед заданных соотношений сигналов нуль-органом отличается повышенной точностью по сравнению с дифференцированием «размытых» термограмм нагрева для определения экстремума, что применялось в прототипе.

Способ комплексного определения теплофизических характеристик материалов, включающий нагрев плоской поверхности материала линейным импульсным источником тепла постоянной мощности, измерении температуры в трех точках, расположенных по перпендикуляру к линейному источнику тепла, и последующий расчет искомых характеристик, отличающийся тем, что регистрируют момент времени, при котором усиленный сигнал второй термопары станет равен сигналу первой термопары, а также значение температуры в третьей точке в этот момент времени, а искомые характеристики определяют по формулам:


где a, λ - соответственно коэффициенты температуропроводности и теплопроводности исследуемого материала; x1, x2, x3 - координаты точек, в которых измеряется температура; T1, T2, Т3 - измеренные значения температуры в точках x1, х2, х3;
τ1 - время достижения заданного соотношения n между температурами T1 и T2(T1=nT2);
Q - количество тепла, выделяемого с единицы длины линейного источника тепла.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения коэффициента теплопроводности теплоизоляции теплоизолированной лифтовой трубы (ТЛТ) в скважине, имеющейся в составе конструкций нефтяных, газовых, термальных и других скважин.

Изобретение относится к способу автоматической перегонки жидких проб в стандартном перегонном аппарате. .

Изобретение относится к измерительной технике. .

Изобретение относится к области средств измерения, а именно к устройствам, служащим для измерения степени сухости пара в системах контроля тепловых потерь в тепловых сетях, величины коэффициента полезного действия турбинных агрегатов тепловых и атомных электростанций.

Изобретение относится к измерительной технике и может быть использовано в системах технологического контроля влажности газов, особенно в производствах, в которых затруднен или невозможен доступ к датчикам влажности, например, в мощных турбогенераторах или ядерно-энергетических установках.

Изобретение относится к области геологии, геохимии, нефтепереработке и нефтехимии, а именно к определению содержания компонент, входящих в смесь углеводородов. .

Изобретение относится к области неразрушающих методов контроля качественного состояния фильтрующе-поглощающих изделий от паров токсичных химикатов и может быть использовано для оценки степени отработки шихты по загрязняющим веществам, поглощающими как на основе физической адсорбции, так и хемосорбции.

Изобретение относится к области машиностроения, а именно к испытаниям деталей с высокотемпературными покрытиями, преимущественно газотурбинных двигателей и установок

Изобретение относится к области металлургии и может быть использовано при расплавлении, рафинировании и разливке высокореакционных металлов и сплавов в вакууме или среде инертного газа

Изобретение относится к теплофизическим исследованиям теплозащитного покрытия на материале и условий работы, влияющих на коэффициент теплопроводности, и может быть использовано для определенна коэффициента теплопроводности тонкостенного теплозащитного покрытия (ТЗП) на лопатках турбин газотурбинных двигателей для создания материалов, защищающих рабочие лопатки от перегрева, так как современные материалы рабочих лопаток исчерпали свои возможности по предельно допустимым температурам

Изобретение относится к области контрольно-измерительной техники и может быть использовано при измерении скорости потока жидкости или газа

Изобретение относится к способу определения количества наносимой жидкости при выполнении процессов кожевенного и мехового производства намазными способами Способ характеризуется тем, что количество жидкости, которое может поглотить кожевая ткань, определяют по влагосодержанию в момент усадки образцов при сваривании в процентах

Изобретение относится к измерительной технике, а именно к способам и устройствам для определения физических свойств веществ путем измерения электрической емкости, и может быть использовано для экспрессного определения теплофизических характеристик неметаллических материалов, например строительных

Изобретение относится к технической физике, а именно к области контроля мощности генераторов тепловой энергии, и может быть использовано для определения производительности прямоточного парогенератора влажного пара с деаэратором

Изобретение относится к области машиностроения, а именно к испытаниям деталей сложной формы, имеющих внутренние полости охлаждения, преимущественно рабочих и сопловых лопаток газотурбинных двигателей и установок
Наверх