Жидкий органический сцинтиллятор



Жидкий органический сцинтиллятор
Жидкий органический сцинтиллятор

 


Владельцы патента RU 2424537:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Изобретение относитcя к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЯР и ЯЭУ. Технический результат - снижение пожароопасности, уменьшение токсичности и повышение прозрачности сцинтиллятора, снижение расходов на создание. Жидкий органический сцинтиллятор, состоящий из активатора, смесителя спектра РОРОР и основы сцинтиллятора, при этом в качестве основы он содержит смесь синтетических углеводородов ароматического ряда - линейный алкилбензол с температурой вспышки насыщенных паров 150°С, прошедшую адсорбционную очистку, а в качестве активатора паратерфенил (р-Тр), при этом он содержит компоненты в следующем составе: линейный алкилбензол 1 л, паратерфенил (р-Тр) от 1,5 до 2 г/л, РОРОР от 0,010 до 0,020 г/л. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЯР и ЯЭУ.

Известен жидкий сцинтиллятор для регистрации нейтронов, содержащий активатор РРО, сместитель спектра РОРОР, соединение лития и основу сцинтиллятора, в качестве основы он содержит нефтяную фракцию углеводородов с температурой кипения 250-320°С и температурой вспышки насыщенных паров 120°С, прошедшую гидроочистку и гидрогенизацию, а в качестве соединения лития LiОСН3 (метилат лития). При этом он содержит компоненты в следующем составе, г/л:

Нефтяная фракция углеводородов - 1

РРО - 1-4

РОРОР - 0,01

LiОСН3 - 60-150

(патент РФ №2078355, oп. 27.04.97. G01T 1/204).

Этот сцинтиллятор узкого профиля, он предназначен только для регистрации нейтронов.

Также известен жидкий сцинтиллятор (патент РФ №2094824, oп. 27.10.97), который в качестве основы содержит жидкие парафины с температурой кипения 232-334°С, в качестве ароматического углеводорода - нафталин, или - метилнафталин, или ксилол, или смесь нафталина с ксилолом, в качестве активатора 2-фенил-5-4-бифенил/-оксазол (ВРО) или 1,3,5-трифенил-2-пиразолин (ТФП), или 2,5-дифенилоксазол (РРО) при следующем соотношении компонентов, мас:

Жидкие парафины - 79,5-94,5

Ароматический углеводород - 5-20

Активатор - 0,4-0,6

Известен жидкий органический сцинтиллятор на основе РХЕ («Study of phenylxylylethane (РХЕ) as scintillator for low energy neutrino experiments». Nuclear Instruments and Methods in Physics Research A 585 (2008) 48-60).

Состав сцинтиллятора:

активатор - паратерфенил - р-Тр - 2 г/л,

сместитель спектра - bis-MSB - 20 мг/л,

основа сцинтиллятора - органическая жидкость - РХЕ.

РХЕ - органическая жидкость, дорогая, требующая очистки методом адсорбции, прозрачность после очистки составляет порядка 10 м.

Известные жидкие сцинтилляторы, используемые для регистрации нейтринного излучения, обладают рядом недостатков. Они имеют малую прозрачность, низкую температуру вспышки насыщенных паров, токсичны. Все это увеличивает капитальные и эксплуатационные расходы при создании детекторов нейтронов больших размеров. Определенным недостатком упомянутых сцинтилляторов является высокая стоимость используемых для их создания материалов. Наиболее близким по характеристикам к заявляемому сцинтиллятору является сцинтиллятор, принятый в качестве прототипа, содержащий активатор РРО, сместитель спектра РОРОР и основу сцинтиллятора - пседокумин (PC), (The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nuclear Instruments and Methods in Physics Research A Volume 600, Issue 3, 11 March 2009, Pages 568-593). Его недостатками также являются высокая токсичность, низкая прозрачность, высокая стоимость.

Прозрачность сцинтиллятора на основе PC составляет 7-8 м, а световыход порядка 10000 фотонов/МэВ.

Задачей изобретения является снижение пожароопасности, уменьшение токсичности и повышение прозрачности сцинтиллятора, снижение расходов на создание.

Для этого предложен жидкий органический сцинтиллятор, состоящий из активатора, сместителя спектра РОРОР и основы сцинтиллятора, при этом в качестве основы он содержит смесь синтетических углеводородов ароматического ряда -линейный алкилбензол с температурой вспышки насыщенных паров 150°С, прошедшую адсорбционную очистку, а в качестве активатора паратерфенил (р-Тр).

При этом он содержит компоненты в следующем составе: линейный алкилбензол

1 л, паратерфенил (р-Тр) от 1,5 до 2 г/л, РОРОР от 0,010 до 0,020 г/л.

В данном изобретении в качестве основы сцинтиллятора используется линейный алкилбензол (ЛАБ) с температурой вспышки насыщенных паров выше +150°С. Линейный алкилбензол является продуктом, получаемым из побочных продуктов переработки нефти, и используется в качестве основы для создания ПАВ и жидких моющих средств. Линейный алкилбензол - недорогая и нетоксичная органическая жидкость.

Для применения в качестве основы сцинтиллятора линейный алкилбензол подвергается адсорбционной очистке от примесей через колонку с оксидом алюминия. Использование в качестве активатора р-Тр позволит, не ухудшая световыход, удешевить конечный продукт.

Пример приготовления сцинтиллятора.

Промышленный линейный алкилбензол очищается от примесей методом адсорбции. В 1 л линейного алкилбензола растворяется от 1,5 до 2 г р-Тр и от 0,010 до 0,02 г РОРОР. Для ускорения процесса растворения возможно повышение температуры. Необходимо отметить, что методика очистки и приготовления сцинтиллятора достаточно просты.

Сцинтиллятор обладает следующими характеристиками.

Прозрачность на длине 420 нм > 10 м, световыход составляет 115% от сцинтиллятора на основе PC (прототип), исходные материалы доступны и имеют низкую стоимость, сцинтиллятор обладает высокой температурой вспышки и не токсичен.

В качестве эталона для измерения световыхода был взят именно PC, поскольку для него с высокой точностью известен абсолютный показатель световыхода.

Использование предлагаемого жидкого органического сцинтиллятора позволяет решать целый ряд фундаментальных и прикладных задач, снизить затраты на изготовление, снизить пожароопасность при работе с большими объемами.

На фиг.1 показана зависимость световыхода от концентрации р-Тр в ЛАБе. Видно, что максимальный световыход достигается при концентрации р-Тр 2 г/л и составляет 85% от эталонного.

На фиг.2 показана зависимость световыхода от концентрации РОРОР в растворе при концентрации р-Тр - 1 и 2 г/л. Максимальный световыход (115% от эталонного образца) достигается при концентрации 0,010 г/л и не меняется при увеличении концентрации в лучшую сторону. Поэтому рекомендуется для изготовления 1 л сцинтиллятора добавлять 0,010-0,020 г/л РОРОР.

Использование предлагаемого жидкого органического сцинтиллятора позволяет решать целый ряд фундаментальных и прикладных задач, снизить затраты на изготовление, снизить пожароопасность при работе с большими объемами. Этот сцинтиллятор обладает рядом достоинств, позволяющих применять его там, где кристаллические сцинтилляторы оказываются непригодными. Он имеет короткое время высвечивания, высокую прозрачность к собственному излучению, им можно придавать любую форму в зависимости от формы детектора, вводить в них источник излучения.

1. Жидкий органический сцинтиллятор, состоящий из активатора, сместителя спектра РОРОР и основы сцинтиллятора, отличающийся тем, что в качестве основы он содержит смесь синтетических углеводородов ароматического ряда - линейный алкилбензол с температурой вспышки насыщенных паров выше 150°С, прошедшую адсорбционную очистку, а в качестве активатора - паратерфенил (р-Тр).

2. Сцинтиллятор по п.1, отличающийся тем, что он содержит компоненты в следующем составе: линейный алкилбензол 1 л, паратерфенил (р-Тр) от 1,5 до 2 г/л, РОРОР от 0,010 до 0,020 г/л.



 

Похожие патенты:

Изобретение относится к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЛР и ЯЭУ.

Изобретение относится к жидкосцинтилляционной альфа-спектрометрии и, в частности, к способам определения активности альфа-излучающих радионуклидов, например, в пробах промежуточных и конечных продуктов технологий получения радиоизотопов и переработки отработавшего ядерного топлива, а также в пробах аэрозольных выбросов, водных сбросов и объектов окружающей среды.

Изобретение относится к области радиоэкологического мониторинга, может быть использовано для измерения содержания радионуклидов в различных компонентах окружающей среды при обработке результатов измерений в комплексе аппаратно-программных средств, позволяющих оперировать с большими массивами радиоэкологической информации.

Изобретение относится к области измерений ядерных излучений и может быть использовано в высокочувствительных сцинтилляционных счетчиках, предназначенных для определения низкоэнергетических бета-излучателей, например углерода-14, трития.

Изобретение относится к устройствам для регистрации ядерных излучений, в частности к криогенным детекторам на основе жидкого аргона, и может быть использовано при решении ряда фундаментальных физических задач, а также при регистрации ядерных излучений в системах ядерной энергетики, безопасности, медицины, неразрушающего контроля. Способ калибровки криогенного детектора частиц на основе жидкого аргона заключается в определении коэффициента пропорциональности между энергией детектируемой частицы и амплитудой сигнала криогенного детектора, при этом для определения коэффициента калибровки используют ядра отдачи с известной энергией, возникающие при неупругом рассеянии на малый угол моноэнергетичных нейтронов на ядрах аргона. Для реализации способа калибровки источник нейтронов, криогенный детектор и детектор рассеянных нейтронов устанавливаются таким образом, чтобы геометрический центр мишени источника нейтронов, геометрический центр криогенного детектора частиц и ось симметрии сцинтиллятора детектора рассеянных нейтронов располагались на одной прямой. Технический результат - повышение скорости набора статистики при определенной точности калибровки. 2 н. и 6 з.п. ф-лы, 3 ил.
Наверх