Способ получения диацетата-ди- -капролактамата меди



Способ получения диацетата-ди- -капролактамата меди
Способ получения диацетата-ди- -капролактамата меди

 


Владельцы патента RU 2425048:

Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) (RU)

Изобретение относится к способу получения диацетата-ди-ε-капролактамата меди. Способ заключается во взаимодействии диацетата меди с ε-капролактамом в хлороформе при воздействии ультразвука частотой 40 кГц и мощностью 80%, температуре 60°С и времени реакции 30 мин с последующим выделением продукта. Технический результат - увеличение выхода диацетата-ди-ε-капролактамата меди.

 

Изобретение относится к способу получения диацетата-ди-ε-капролактамата меди, который используется в химической промышленности как модификатор поликапроамидного волокна и катализатор реакции олигомеризации ε-капролактама.

Наиболее близким является способ получения диацетата-ди-ε-капролактамата меди (наряду с побочным диацетатом-тетра-ε-капролактаматом меди) взаимодействием диацетата меди с ε-капролактамом при использовании механического перемешивания - мешалки, времени реакции 40-60 мин и температуры синтеза не более 40°C (Ефанова Е.Ю. Катализ реакции ε-капролактама с предельными незамещенными и полифторированными одноатомными спиртами в синтезе олигомеров. Автореферат дис. канд. хим. наук. Волгоград, 2002. - 18 с).

К недостаткам можно отнести то, что данный способ не позволяет добиться высоких степеней превращения исходных реагентов, выходов продукта реакции и высокой частоты продукта. Так, максимальный выход, который может быть достигнут данным методом, не превышает 27-30%. Кроме того, четко не оговаривается температура синтеза, при которой следует проводить получение диацетата-ди-ε-капролактамата меди, а ограничивается только максимальная температура, которая не должна превышать 40°C, вследствие чего наблюдается превалирование тех или иных побочных процессов, заключающихся в образовании побочного диацетата-тетра-ε-капролактамата меди (температура плавления 62°C):

Задача: разработка технологичного способа получения диацетата-ди-ε-капролактамата меди.

Техническим результатом заявляемого способа является возможность существенного повышения степени превращения исходных реагентов, выхода продукта реакции и увеличения селективности реакции образования диацетата-ди-ε-капролактамата меди.

Поставленный технический результат достигается путем взаимодействия диацетата меди с ε-капролактамом в хлороформе с последующим выделением продукта, причем процесс осуществляют при воздействии ультразвука частотой 40 кГц и мощностью 80%, температуре 60°C и времени реакции 30 мин.

При этом диацетат-ди-ε-капролактамат меди образуется с выходом 99,4% и степенью превращения диацетата меди 98,7%.

К преимуществам данного способа можно отнести следующие:

- высокие степень превращения исходных реагентов и выхода продукта реакции позволяют фактически отказаться от стадии очистки целевого продукта;

- применение температуры 60°C, ультразвука частотой 40 кГц и мощностью 80% способствует существенному повышению селективности реакции образования диацетата-ди-ε-капролактамата меди за счет увеличения доли активных центров сорбции и формирования стабильного бикоординированного медного комплекса, а также отсутствию образования побочного диацетата-тетра-ε-капролактамата меди;

- процесс проводится при промышленно осуществимых и доступных температурах, частоте и мощности ультразвука;

- получение диацетата-ди-ε-капролактамата меди при температуре 60°C, воздействии ультразвука частотой 40 кГц мощностью 80% приводит фактически к количественному выходу продукта реакции 99,4% и степени превращения диацетата меди 98,7%;

- способ получения диацетата-ди-ε-капролактамата меди при температуре 60°C, воздействии ультразвука частотой 40 кГц и мощностью 80% является экспрессным, так как время реакции сокращается с 60 мин до 30 мин.

Получение диацетата-ди-ε-капролактамата меди при нефиксированных температурах (40±5-7°C) и температурах ниже 40°C (20-30°C) способствует значительному понижению степени превращения диацетата меди до 65-75,5%. Мощность ультразвука слабо влияет на степень превращения диацетата меди. Так понижение мощности ультразвука до 40% вызывает снижение степени превращения диацетата меди до 78,9% (при 40°C), а повышение мощности ультразвука до 120% не способствует увеличению выхода продукта.

Заявленный способ осуществляется следующим образом.

В колбу помещают диацетат меди, ε-капролактам и хлороформ, которые и диспергируют. Полученную взвесь охлаждают и выдерживают 30 мин для агломерации остатков непрореагировавшего диацетата меди и дальнейшего их выпадения с последующим отделением фильтрованием. Выделение диацетата-ди-ε-капролактамата меди осуществляют испарением хлороформа.

Способ получения диацетата-ди-ε-капролактамата меди из диацетата меди и ε-капролактама в хлороформе при воздействии ультразвука иллюстрируется следующим примером.

Пример. В плоскодонную колбу на 100 мл помещают 20 мл очищенного хлороформа, прибавляют 1 г ε-капролактама, после полного растворения которого, высыпают 1 г диацетата меди и диспергируют полученную смесь при температуре 60°C, частоте ультразвука 40 кГц и мощности 80% в течение 30 мин. При этом диацетат меди переходит в раствор и образуется комплекс. Далее смесь выдерживается 30 мин при выключенном ультразвуке и дальнейшем охлаждении. Не растворившийся диацетат меди отфильтровывают, а из маточного раствора при комнатной температуре испаряют хлороформ в течение 4-6 часов. Выпавшие кристаллы сушат. Точка плавления продукта 145°C. Выход диацетата-ди-ε-капролактамата меди составляет 99,4%. Степень превращения диацетата меди 98,7%. Вычислено: М=408, N 6,86%. Найдено: М=395, N 6,74%. В ИК-спектре имеются следующие характерные полосы поглощения, см-1: 1668 (νC=O), 1635 (амид I), 1540 (амид II), 3300-3200 (νN-H), 2848 (νC-H). Спектр ЯМР 1H (CDCl3), δ, м. д.: 2,30-2,53 м (6H, CH 3); 13,44 с (2H, NH); 1,19 с, 3,26-5,21 м (10H, CH 2).

Таким образом, разработан технологический способ получения диацетата-ди-ε-капролактамата меди взаимодействием диацетата меди с ε-капролактамом в хлороформе при температуре 60°C, времени реакции 30 мин, воздействии ультразвука частотой 40 кГц и мощностью 80%, позволяющий повысить степень превращения диацетата меди до 98,7%, выход продукта реакции до 99,4% и исключить возможность образования побочных продуктов.

Способ получения диацетата-ди-ε-капролактамата меди путем взаимодействия диацетата меди с ε-капролактамом в хлороформе с последующим выделением продукта, отличающийся тем, что процесс осуществляют при воздействии ультразвука частотой 40 кГц и мощностью 80%, температуре 60°С и времени реакции 30 мин.



 

Похожие патенты:

Изобретение относится к химической промышленности, а именно к получению нового производного 2,3-дикарбоксиантрахинона как исходного соединения для синтеза металлокомплексов тетра[4,5]([6,7]1-ацетил-2Н-нафто[2,3-D][1,2,3]триазол-5,8-дион)фталоцианина, которые могут быть использованы в качестве красителей и катализаторов.

Изобретение относится к соединению общей формулы и его фармацевтически приемлемым солям и сольватам. .
Изобретение относится к способу получения комплексного соединения меди с пиридоксином. .

Изобретение относится к тетра[4,5]([6,7]1-ацетил-2Н-нафто[2,3-D][1,2,3]триазол-5,8-дион)фталоцианинам меди и кобальта формулы где М - Cu, Со. .

Изобретение относится к нанокристаллическим соединениям формулы где АОX представляет оксид металла, где А выбран из Ti или Zr, x=2; Men+ представляет собой ион металла, обладающий антибактериальной активностью, выбранный из Ag + и Сu++, где n=1 или 2; L представляет собой бифункциональную молекулу, или органическую, или металлорганическую, способную одновременно связываться с оксидом металла и ионом металла Men+; где органическая молекула выбрана из пиридина, дипиридила, трипиридила, функционализированных карбоксильными группами (-СООН), бороновыми группами (-В(ОН)2) или фосфоновыми группами (-РО3Н2), или 4-меркаптофенилбороновой кислоты; где металлорганическая молекула представляет собой металлорганический комплекс, содержащий органический лиганд, координированный центральным атомом металла и содержащий бороновую (-В(ОН)2), фосфоновую (-РО3Н2) или карбоксильную (-СООН) функциональную группу, и группы координированы центральным атомом металла, способные связываться с ионами металлов с антибактериальной активностью; где указанный органический лиганд, координированный центральным атомом металла, выбран из пиридина, дипиридила, трипиридила, функционализированных карбоксильными группами (-СООН), бороновыми группами (-В(ОН)2), или фосфоновыми группами (-РО 3Н2), или 4-меркаптофенилбороновой кислоты; i представляет число групп L-Men+, связанных с наночастицей АОх.

Изобретение относится к тетра-(5-ацетиламино-7-гептилокси)антрахинонопорфиразинам меди и кобальта формулы Полученные соединения могут быть использованы в качестве красителей и катализаторов.

Изобретение относится к тетра-(5-ацетиламино-7-гидрокси)антрахинонопорфиразинам меди и кобальта формулы Полученные соединения могут быть использованы в качестве красителей и катализаторов.

Изобретение относится к комплексам оксалата димеди(I), стабилизированным нейтральным основанием Льюиса, таким как алкины, и к применению комплексов оксалата димеди(I) в качестве исходных продуктов для осаждения металлической меди, при котором в качестве нейтрального основания Льюиса применяют нециклические алкины.

Изобретение относится к химической промышленности, а именно к новому производному металлопорфиразина-тетра-[(10-сульфо)бензо[ ]]антрахинонопорфиразину меди формулы Предложенный тетра-[(10-сульфо)бензо[ ]]антрахинонопорфиразин меди может быть использован в качестве красителя как для полимерных материалов, так и для крашения хлопчатобумажных и льняных тканей.

Изобретение относится к области сельского хозяйства и предназначено для увеличения энергии прорастания, всхожести семян и урожайности зерновых культур при применении бисмалондиамиднитрата меди (II) формулы (I) Cu(NO3)2·2CH 2(CONH2)2 в качестве стимулятора роста зерновых культур.
Изобретение относится к способу получения комплексных растворов ацетиленидов меди общей формулы R-С С-Сu·3МХ2, где R - алкил, арил; М - Mg, Са; Х - Cl, Br, J в биполярном апротонном растворителе (N,N-диметилформамид, N,N-диметилацетамид)
Изобретение относится к способу получения бета-дикетоната палладия (II) или меди (II)

Изобретение относится к фотосенсибилизаторам, а именно к конъюгату RGD-содержащего пептида или RGD-пептидомиметика и фотосенсибилизатора, выбранного из тетраарилпорфирина формулы: или хлорофилла или бактериохлорофилла формул I, II или III; в котором тетраарилпорфирин или указанное производное хлорофилла или бактериохлорофилла формулы I, II или III содержит, по меньшей мере, один остаток RGD-содержащего пептида или RGD-пептидомиметика

Изобретение относится к химической промышленности, а именно к новым замещенным металлофталоцианинам, которые могут найти применение в качестве прямых и кислотных красителей для крашения хлопчатобумажных и белковых волокон

Изобретение относится к новым координационным соединениям производным имидазол-4-она, ингибирующим теломеразу, общей формулы где заместитель А выбран из группы, включающей арильные заместители, конденсированные арильные заместители, циклопентил, циклогексил, алифатические заместители, алифатические заместители с двойной связью, алифатические заместители с тройной связью, метиламиновый заместитель CH3NH-, карбэтокси-группу C2H5O(O)С-, пятичленные гетероциклические заместители с одним атомом азота, пятичленные гетероциклические заместители с двумя атомами азота, шестичленные гетероциклические заместители, заместитель В отсутствует или является алифатическим заместителем, заместитель С представляет собой гетероарильный заместитель, присоединяемый к производному имидазол-4-она через атом углерода и выбранный из группы, включающей 5-членные ненасыщенные моноциклические гетероарильные заместители с 1, 2, 3 гетероатомами в цикле, выбранными из группы, включающей N, О и S, 6-членные ненасыщенные моноциклические гетероарильные заместители с 1, 2, 3 гетероатомами в цикле, выбранными из группы, включающей N, О и S, 8-, 9- и 10-членные ненасыщенные бициклические гетероарильные заместители с 1, 2, 3 гетероатомами в цикле, выбранными из группы, включающей N, О и S, Х, представляет собой хлорид Cl или нитрат NO3

Изобретение относится к карборансодержащим порфиринам (порфириновым соединениям) формулы: R1, R2, R3 и R4, независимо, обозначают -NO2, -NH 2, галоген или заместитель, представленный следующей формулой ;при условии, что, по меньшей мере, один из R1 R2, R3 и R4 обозначает заместитель, изображенный формулой (2), и при условии, что, по меньшей мере, один из R1, R2, R 3 и R4 обозначает заместитель, представленный как NO2, NH2 или галоген
Изобретение относится к способу получения комплексного соединения меди с 5,5-диметил-1,3-циклогександионом состава CuL2, где L - 5,5-диметил-1,3-циклогександион. Способ включает приготовление раствора 5,5-диметил-1,3-циклогександиона и хлорида лития в этиловом спирте в соотношении 5:0,5:100, электролиз полученного раствора с медными электродами, отделение полученного осадка, промывку осадка и его сушку. При этом электролиз проводят при помощи импульсного электрического тока время импульса - 5 с, плотность электрического тока 2-4 мА/см2. Изобретение позволяет получить вышеуказанное комплексное соединение, которое может применяться для производства высокотемпературных сверхпроводников, катализаторов, стабилизаторов и т.п. 3 табл., 1 пр.

Изобретение относится к области химии металлорганических соединений, в частности к алкинилфосфиновым золотомедным комплексам, диссоциирующим в растворе с образованием ионов . Алкинилфосфиновые золотомедные комплексы способны образовывать ковалентные конъюгаты с белками, переходя при этом в водорастворимую форму, проявляют люминесцентные свойства и могут быть использованы в качестве меток для флуоресцентной микроскопии и в люминесцентном анализе. 5 ил., 4 табл., 3 пр.

Изобретение относится к новым редокс парам для применения в сенсибилизированных красителем солнечных элементах СКСЭ. Редокс-пары образованы по общей формуле (производное бипиридина)nMe(Ion)m, где производное бипиридина есть: где R1, R2, R3 - любой заместитель из ряда метил, этил, пропил, бутил, пентил, гексил, Me - металл из ряда Cr, Mo, Nd, Ni, Pd, Pt, Ir, Co, Rh, Cu, W, Mn, Та, Fe, Ru, Ion - противоион - любой анион из ряда ClO4 -, Cl-, I-, BF4 -, PF6 -, CF3SO3 -, n, m - соответствуют валентности иона металла. Также предложены новые редокс-пары (вариант) и электролит для применения в СКСЭ. Новые редокс-пары применяются в СКСЭ и обладают наинизшими редокс-уровнями для повышения напряжения холостого хода. 3 н.п. ф-лы, 1 ил., 1 табл., 3 пр.
Изобретение относится к области химии, конкретно к способу получения глицината меди(II), который может найти применение в качестве биологически активных и кормовых добавок. Предлагаемый способ осуществляется в присутствии ацетофеноноксима и позволяет повысить выход глицината меди(II). Способ включает нагревание тонкоизмельченного порошка глицина и порошкообразной меди в воде (или диметилформамиде) при постоянном перемешивании реакционной смеси. Затем осадок декантируют, растворяют, раствор фильтруют, частично упаривают, осаждают после охлаждения этиловым спиртом глицинат меди(II), смесь фильтруют, комплекс промывают петролейным эфиром и высушивают. При этом в реакционную смесь перед нагреванием добавляют окислитель, в качестве которого используют ацетофеноноксим, при следующем соотношении компонентов, мас.%: глицин 3,35-6,00 медь 1,52-2,60 вода (или диметилформамид) 89,32-80,53 ацетофеноноксим 5,81-10,87 1 пр.
Наверх