Способ обнаружения искаженных импульсных сигналов



Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов
Способ обнаружения искаженных импульсных сигналов

 


Владельцы патента RU 2425394:

Федеральное государственное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к технике приема (обнаружения) импульсных сигналов в условиях искажающих частотно-селективных замираний и белого шума. Достигаемый технический результат - повышение достоверности обнаружения импульсного сигнала на фоне белого шума в условиях частотно-селективных искажений при неизменных энергетических и частотно-временных ресурсах канала связи. Согласно способу формируют основной канал обнаружения, содержащий согласованную фильтрацию сигнала с пороговым принятием решения о его наличии или отсутствии по выбранному критерию, формируют два дополнительных канала обнаружения, в которых по исходному сигналу S(t) и заданной модели частотно-селективных искажений H(ω,t) определяют моменты времени τi, i=1, 2 опорных отсчетов. В этих отсчетах измеряют суммарные значения остаточного сигнала и шума Ui) на выходе согласованного фильтра и вычисляют его коэффициенты корреляции r(τi). При известной мощности выходного шума Рш согласованного фильтра и заданной вероятности ложной тревоги Pf вычисляют значения порогов принятия решения по формуле где - функция, обратная интегралу вероятности, эти пороги устанавливают в дополнительных каналах обнаружения, результирующее решение о наличии или отсутствии сигнала принимают на основе частных решений по основному и дополнительным каналам по правилу: сигнал обнаруживается, если хотя бы в одном из частных каналов он регистрируется. 1 табл., 2 ил.

 

Изобретение относится к технике приема (обнаружения) импульсных сигналов в условиях искажающих частотно-селективных замираний и белого шума и может быть использовано в радиолокационных системах, а также в системах приема и обработки дискретной информации, функционирующих в радиоканалах со случайной структурой.

Данная проблема особенно актуальна для широкополосных радиоканалов, в которых наиболее интенсивно проявляются частотно-селективные замирания, существенно искажающие спектр информационного сигнала и, следовательно, снижающие достоверность (помехоустойчивость) его обнаружения на фоне белого шума. Вопросам нейтрализации негативных последствий влияния радиоканалов со случайной структурой, в том числе частотно-селективных искажений, на информационный сигнал уделяется большое внимание.

В частности, известен способ обнаружения искаженного по амплитудному спектру импульсного радиосигнала, в основу реализации которого положено использование так называемого испытательного импульса, по реакции канала на который в приемнике регулируется линейный четырехполюсник (фильтр) с целью компенсации частотно-селективных искажений (Финк Л.М. Теория передачи дискретных сообщений. М.: Сов. Радио, 1970, с.487-488). К недостаткам данного способа относится сложность его технической реализации, а также то, что он практически неприменим для каналов с быстрыми замираниями, при которых импульсная функция канала H(t,τ) может существенно измениться между двумя соседними посылками испытательного импульса. Это приведет к неверной регулировке параметров компенсирующего четырехполюсника и, следовательно, к невозможности эффективной компенсации частотно-селективных искажений. Даже при медленных замираниях этот способ работает только при относительно низком уровне помех в канале, так как при большом уровне помех будет необратимо искажена импульсная функция канала H(t,τ), а следовательно, и частотная функция с последствиями, аналогичными при быстрых замираниях. Кроме того, физически реализуемым четырехполюсником (фильтром) принципиально невозможно скомпенсировать провалы в спектре сигнала, доходящие до нулевого значения на некоторых частотах. Дополнительно к этому, наличие постоянно действующего испытательного импульса снижает общую пропускную способность канала связи.

Другим известным способом обнаружения (приема) искаженных импульсных сигналов является разнесение элементов сигнала по времени или (и) по частоте. Сущность разнесения по времени заключается в том, что каждый элемент сигнала передается несколько раз (дважды или трижды) с интервалом времени, обеспечивающим независимый характер частотно-селективных искажений по каждому элементу сигнала с последующим мажоритарным или накопительным способом принятия итогового решения. Сущность частотного разнесения заключается в дублировании передаваемого элемента сигнала на разных частотах с разносом, превышающим интервал корреляции замираний по частоте (Финк Л.М. Теория передачи дискретных сообщений. М.: Сов. Радио, 1970, с.398-399).

Недостатки этого способа очевидны: при разнесении по времени замедляется результирующая скорость передачи информации, а при частотном разнесении увеличивается общая занимаемая полоса частот каналом связи при неизменной скорости передачи.

Кроме рассмотренных способов для повышения достоверности приема информации в каналах с частотно-селективными искажениями сигналов применяют специальное помехоустойчивое кодирование, как правило, за счет введения избыточности (дополнительных символов) в структуру кода, что также приводит к замедлению скорости передачи информации (Финк Л.М. Теория передачи дискретных сообщений. М.: Сов. Радио, 1970, с.660).

Таким образом, краткий анализ известных способов повышения достоверности обнаружения импульсных сигналов при наличии частотно-селективных искажений свидетельствует о необходимости увеличения частотно-временных ресурсов выделенных каналов связи.

Наиболее близким к предлагаемому является способ обнаружения импульсного сигнала, содержащий последовательное выполнение операций согласованной фильтрации исходного сигнала с последующим пороговым принятием решения о его наличии или отсутствии по выбранному критерию (Финк Л.М. Теория передачи дискретных сообщений. М.: Сов. радио, 1970, с.157-158).

Недостатком данного способа является значительное изменение - мощности сигнала, по которому принимается решение по причине случайного характера частотно-селективных искажений и, как следствие этого, - снижение достоверности его обнаружения на фоне белого шума. Причем, чем интенсивнее будут проявляться искажения, тем хуже будут количественные характеристики обнаружения.

Технический результат изобретения заключается в повышении помехоустойчивости (достоверности) обнаружения импульсного сигнала на фоне белого шума в условиях частотно-селективных искажений при неизменных энергетических и частотно-временных ресурсах канала связи.

Данный технический результат достигается за счет учета существенного различия в формах искаженного выходного сигнала согласованного фильтра и корреляционной функции выходного шума. Это обстоятельство позволяет использовать дополнительную информацию о несоответствиях между значениями искаженного сигнала и корреляционной функции шума в области высокой корреляции на выходе согласованного фильтра. Таким образом основное содержание идеи повышения достоверности обнаружения искаженных импульсных сигналов основано на предсказании значения шума в момент информационного отсчета по результатам его измерения в опорных отсчетах, находящихся в области высокой корреляции с информационным отсчетом и использовании информации об этом шуме при последующем вынесении решения. В результате итоговое решение о наличии или отсутствии сигнала по выбранному критерию принимают на основе трех частных решений: по безотносительному наличию или отсутствию сигнала на выходе согласованного фильтра в основной момент отсчета и по наличию или отсутствию сигнала на выходе того же согласованного фильтра в тот же момент отсчета, на относительно двух опорных сигнально-шумовых измерений в точках сильной корреляции, расположенных во времени до и после основного момента отсчета. При этом правило принятия итогового решения следующее: сигнал обнаруживается, если хотя бы в одном из частных каналах обработки он регистрируется, в противном случае принимаются решения об отсутствии сигналов в канале связи.

Для чего, совместно с основным каналом обнаружения, включающим согласованную фильтрацию сигнала с последующим пороговым принятием решения о его наличии или отсутствии по выбранному критерию, формирует два дополнительных канала обнаружения, в которых по известной форме исходного обнаруживаемого сигнала S(t) при заданной модели частотно-селективных искажений Н(ω,t) определяют моменты времени τi, i=1, 2, опорных отсчетов, в которых измеряют суммарные значения остаточного сигнала и шума Uсшi) на выходе согласованного фильтра и вычисляют его коэффициенты корреляции r(τi) между опорными и информационным отсчетами, по которым при известной мощности выходного шума Рш согласованного фильтра и заданной вероятности ложной тревоги PF вычисляют значения порогов принятия решения по формуле:

которые устанавливают в управляемых пороговых устройствах дополнительных каналов обнаружения, где Ф-1(·) - функция, обратная интегралу вероятности; при этом результирующее решение о наличии или отсутствии сигнала принимают на основе соответствующих частных решений по основному и дополнительным каналам обнаружения по правилу: сигнал обнаруживается, если хотя бы в одном из частных каналов обнаружения он регистрируется.

Таким образом, данный способ обнаружения импульсного сигнала в отличие от существующих аналогов для своей реализации не требует знания текущей импульсной (частотной) характеристики канала и, следовательно, не требует постоянно действующих зондирующих сигналов, снижающих пропускную способность канала. Способ не требует также разнесения элементов сигнала по времени и по частоте, а позволяет в рамках неизменных энергетических и частотно-временных ресурсов повысить помехоустойчивость (достоверность) обнаружения сигналов.

Наличие в приемнике трех каналов обработки сигнала взаимно дополняют друг друга по эффективности обнаружения. В предлагаемом способе особенность механизма обнаружения такова, что если в одном канале условия обнаружения ухудшаются, то в других каналах в тот же момент времени, условия обнаружения улучшаются автоматически и в результате показатели итогового обнаружения практически не ухудшаются. Например, возможен такой характер изменения спектра сигнала, при котором средний уровень его спектральной плотности возрастает, следовательно будет возрастать и амплитуда сигнала в момент его регистрации. При этом достоверность обнаружения по основному каналу увеличится, а по дополнительным каналам уменьшится за счет возникновения составляющей сигнала (подставки) в опорных отсчетах.

Равновероятным может быть такое искажение сигнала, при котором средний уровень его спектральной плотности уменьшится, что приведет к уменьшению амплитуды сигнала в момент его отсчета и, следовательно, к снижению достоверности обнаружения по основному каналу на фоне белого шума. Одновременно достоверность обнаружения по дополнительным каналам (или, по крайней мере, по одному из них) улучшится, так как при этом станет ничтожно малой составляющая сигнала (подставка) в опорных отсчетах. В этом случае в опорных отсчетах будет измеряться только шум, по значению которого с учетом его коэффициента корреляции и заданной вероятности ложной тревоги устанавливают требуемые пороги принятия решений в дополнительных каналах обнаружения в соответствии с выражением (1). При промежуточных формах частотно-селективных искажений спектра сигнала будет соответствующим образом перераспределяться значение достоверности обнаружения по раздельным каналам обработки.

Установлено, и это будет показано на частном примере, что с увеличением частоты селективных искажений их влияние на основной канал уменьшается и, следовательно, в этом случае он будет являться определяющим в обеспечении заданной достоверности обнаружения. При этом, вне зависимости от положения опорных точек, дополнительные каналы не внесут сколь-либо заметного вклада в результирующую достоверность обнаружения. В этом случае значение порога принятия решения по основному каналу будет постоянным и определяться известным выражением (Тихонов В.И. Оптимальный прием сигналов. М.: Радио и связь, 1983, с.79):

Наоборот, при малой частоте селективных искажений, при которых имеют место широкие провалы в спектре сигнала, достоверность обнаружения по основному каналу уменьшится, а по дополнительным каналам увеличится, поскольку расчетные положения опорных точек переходят в область высокой корреляции и начинают «работать» управляемые пороги в каналах обнаружения в соответствии с выражением (1). При этом итоговая эффективность обнаружения с одновременным использованием трех каналов будет незначительно отличаться от потенциально достижимой эффективности, которая имеет место при отсутствии частотно-селективных искажений.

Таким образом, предложенный комбинированный способ обнаружения обладает той фундаментальной особенностью, что он в значительной степени нейтрализует изменяющиеся в широком диапазоне частотно-селективные искажения информационных сигналов.

Представим математическое обоснование предлагаемого способа обнаружения сигнала и доказательство сформулированного технического результата.

Пусть исходный обнаруживаемый сигнал S(t) имеет спектр S(jω). Коэффициент передачи фильтра, согласованного с этим сигналом, определяется известным выражением:

где С0 и t0 - соответственно постоянный множитель (коэффициент усиления) и временной сдвиг, обуславливающий физическую реализуемость фильтра; * - знак комплексной сопряженности.

Для упрощения записи последующих выражений без потери общности получаемых результатов можно принять С0=1, a t0=0. С учетом данного замечания коэффициент передачи фильтра будет равен

В качестве математической модели частотно-селективных искажений спектра сигнала примем полигармоническую модель в следующем виде:

где n - количество гармонических составляющих в модели; ai и ti - случайные величины, изменяющиеся по равновероятному закону в заданных интервалах Δai, ti с заданным шагом δai, ti.

При этом необходимо обеспечить Δai, ti/δai, ti>n, чтобы число степеней свободы изменения случайных величин было больше числа гармонических составляющих в модели. Знаки ± в данной модели также могут появляться равновероятно.

Для физической осуществимости функции (5) должно выполняться следующее условие:

Модель (5) предполагает искажение только амплитудного спектра сигнала и не влияет на его фазовый спектр. Поэтому искаженный выходной сигнал согласованного фильтра будет симметричен относительно основного момента времени принятия решения и, следовательно, моменты опорных отсчетов также будут расположены симметрично относительно основного информационного отсчета.

Как следует из выражения (5), частотная характеристика канала с селективными искажениями является четной функцией частоты и, следовательно, его импульсная характеристика также будет четной и действительной функцией времени. При этом на некоторых частотах в пределах границ спектра сигнала будет иметь место симметрия спектра искаженного сигнала относительно его средней частоты. Спектр комплексной огибающей такого сигнала, перенесенного на нулевую частоту, также будет являться четной функцией, а сама комплексная огибающая будет являться действительным видеочастотным сигналом, подвергаемым последующей обработке с целью обнаружения его предлагаемым способом. Однако при такой модели искажений на определенных несущих частотах в пределах заданной полосы может не выполняться симметрия спектра относительно его средней частоты и, следовательно, комплексная огибающая такого сигнала не будет являться действительной функцией времени. В этом случае обработку искаженного сигнала необходимо осуществлять на определенной частоте, не меньшей, чем половина ширины спектра сигнала для обеспечения физической реализуемости обработки.

С учетом (4) и (5) спектр искаженного сигнала на выходе согласованного фильтра будет равен

Поскольку фазовый спектр выходного сигнала согласованного фильтра равен нулю за исключением постоянного временного сдвига, который здесь опущен, а амплитудный спектр является четной функцией частоты, то выходной сигнал - как функция времени будет определяться преобразованием Фурье от спектра (7):

При отсутствии частотно-селективных искажений выходной сигнал согласованного фильтра будет равен

который с точностью до постоянного множителя совпадает с автокорреляционной функцией шума на выходе фильтра.

Из сравнения выражений (8) и (9) следует, как и отмечалось ранее, что искаженный выходной сигнал согласованного фильтра структурно отличается от корреляционной функции выходного шума. Учет этого отличия в области высокой корреляции и обеспечивает повышение достоверности обнаружения импульсного сигнала в условиях частотно-селективных искажений на фоне белого шума.

Значение сигнала в момент информационного отсчета при t=0 в соответствии с (8) будет равно

Далее необходимо определить моменты опорных точек с последующим измерением в них сигнально-помеховых составляющих. Расчеты свидетельствуют о том, что практически вне зависимости от количества гармоник n в полигармонической модели искажений и от статистики величин ai и ti, наиболее вероятные моменты опорных точек ±τ0, максимизирующих вероятность правильного обнаружения, определяются первой наиболее интенсивной гармоникой частотно-селективных искажений. Именно эта гармоника с параметрами a1=1 и t1=tmin вызывает глубокие и широкие искажения спектра сигнала.

В этом случае выходной сигнал согласованного фильтра при N=n=1 в соответствии с (8) будет иметь вид

Моменты опорных точек определяются в области высокой корреляции из решения уравнения:

с последующим уточнением наличия минимума в этих точках.

При этом значение сигнала в симметрично расположенных опорных точках ±τ0 определяется по выражению (8):

Характеристики обнаружения, такие как вероятность ложной тревоги и правильного обнаружения детерминированного сигнала определяются следующими выражениями (Тихонов В.И. Оптимальный прием сигналов. М.: Радио и связь, 1983, с.79-80):

где Um, П - соответственно, амплитуда сигнала в момент отсчета (принятия решения) и абсолютное значение порога принятия решения; а Ф(·) - интеграл вероятности.

Если выразить порог П в (15) через мощность шума на выходе согласованного фильтра и заданную вероятность ложной тревоги из (14), а вместо Um подставить выражение (10), то вероятность правильного обнаружения сигнала в основном канале обработки, которым характеризуется прототип, будет иметь вид:

Здесь вторая составляющая в квадратных скобках представляет собой отношение сигнал-шум по напряжению на выходе согласованного фильтра, которое является случайной величиной, следовательно, и вероятность (16) является функцией случайных параметров математической модели частотно-селективных искажений.

Для получения средней вероятности правильного обнаружения необходимо выражение (16) усреднить по всем возможным изменениям этих случайных параметров:

где W(a1, …, an; t1, …, tn) - плотность вероятности совместного распределения указанных случайных параметров.

Данные случайные величины, как правило, являются независимыми и изменяющимися по равновероятному закону в определенных пределах, что упрощает решение интеграла (17), по крайней мере, численным методом, так как даже при этих ограничениях аналитически данный многократный интеграл не решается.

Используя свойства условного нормального закона распределения (Вентцель Е.С. Теория вероятностей. М.: Наука, 1969, с.192), можно показать, что вероятности ложной тревоги и правильного обнаружения в дополнительных (во втором и третьем) каналах обработки с использованием симметричных опорных отсчетов будут определяться следующими выражениями:

где r(±τ0) - коэффициент корреляции шума между симметричными опорными и информационным отсчетами.

Если выразить порог П из (18) через заданную вероятность ложной тревоги и подставить его в выражение (19), а вместо Sвых(0) и Sвых(±τ0) подставить соответствующие выражения (10) и (13), то с учетом четности коэффициента корреляции выходного шума согласованного фильтра получим окончательное выражение для расчета вероятности правильного обнаружения сигнала во втором и третьем дополнительных каналах обработки:

Аналогично (17) для получения средней вероятности правильного обнаружения в дополнительных каналах обработки необходимо выражение (20) усреднить по всем возможным изменениям случайных параметров частотно-селективных искажений с соответствующими их плотностями вероятности.

Поскольку в предлагаемом способе обнаружения итоговое решение о наличии или отсутствии сигнала выносится по соответствующим частным решениям трех каналов обработки, то ложная тревога будет иметь место в том случае, если при отсутствии сигнала хотя бы в одном из каналов обработки помеха превысит порог.

Если вероятности частной ложной тревоги во всех трех каналах обработки принять одинаковыми и равными P1F=P2F=P3F=PF, то при этом результирующая вероятность ложной тревоги будет равна

откуда

Таким образом, при заданной результирующей вероятности ложной тревоги PF рез по выражению (22) определяется частное значение вероятности ложной тревоги PF, которое должно быть подставлено в соответствующие выражения для вычисления вероятности правильного обнаружения в основном (16) и в дополнительных (20) каналах обработки. При этом результирующее правильное обнаружение будет регистрироваться, если при наличии сигнала в канале он будет обнаружен на выходе хотя бы одного из каналов обработки.

В соответствии с этим алгоритмом принятия решения

Так как P, то

Рассмотрим частный случай на видеочастоте, когда в качестве обнаруживаемого сигнала используется гауссов импульс вида

где U0 и а - соответственно амплитуда сигнала и параметр, определяющий его длительность.

Спектр этого сигнала как преобразование Фурье от (25) определяется выражением

При этом выходной сигнал согласованного фильтра при отсутствии искажений в соответствии с (9) будет равен

На основании (27) определяется коэффициент корреляции шума на выходе согласованного фильтра:

При подстановке спектра (26) в выражение (11), с учетом известного разложения:

на основе (12) численным методом определено значение времени опорного отсчета, которое для данного вида сигнала оказалось достаточно близким к минимальному значению из всех ti, то есть τ0≈t1.

Эффективную длительность гауссового импульса (25) определим из условия уменьшения его значения до уровня 0,1 от максимальной величины, в результате получим

Для первой гармоники частотно-селективных искажении примем значение ti min=t1=0,25 Tc с шагом для последующих гармоник . При этом параметр ai изменяется от 0,2 до 1 с шагом . Поскольку, именно, первая гармоника искажений определяет, главным образом, положение опорной точки, то при τ0=0,25 Тс в соответствии с (28) с учетом (30) коэффициент корреляции шума на выходе согласованного фильтра в этой точке будет равен r(τ0)=ехр(-0,29)≈0,75.

Для получения численного значения вероятности правильного обнаружения в способе-прототипе и в предлагаемом способе при заданной вероятности ложной тревоги положим, что отношение сигнал-шум по мощности на выходе согласованного фильтра при отсутствии искажений равно 2E/N0=U2mш=30, где Е и N0 - соответственно энергия сигнала и спектральная плотность мощности белого шума. При этом отношение сигнал-шум по напряжению Если принять амплитуду сигнала в момент отсчета

При этих значениях и равных вероятностях ложной тревоги в способе-прототипе и в предлагаемом способе PF прот=PF рез=10-3 и при трех гармониках (n=N=3) частотно-селективных искажений с разными параметрами {ai} и {ti/Tc} по формулам (16), (20) и (24) рассчитаны и сведены в таблицу значения вероятностей правильного обнаружения сигнала раздельно в первом канале обработки Р (прототип), во втором и третьем дополнительных каналах обработки Р2,3Д и результирующей вероятности РД рез в предлагаемом способе, в котором использованы одновременно три канала обнаружения.

Таблица
Значения вероятностей правильного обнаружения сигнала
2E/N0=30; τ0с=0,25; РFпротFрез=10-3; РД исх=0,985
{ai} {-1; 0,3; -0,5} {1; -0,5; 0,6} {-0,8; -0,7; 1}
{ti/Tc} {0,25; 0,5; 0,75} {0,25; 0,3; 0,8} {0,3; 0,35; 0,9}
Р (прототип) 0,382 0,994 0,412
Р2,3Д 0,693 0,152 0,675
РДрез (предл. способ) 0,942 0,996 0,941

В первой строке таблицы приведено значение исходной вероятности правильного обнаружения РД исх при отсутствии частотно-селективных искажений, рассчитанной по формуле (16) при ai=0 и N=1. Из таблицы следует, что при определенных соотношениях параметров частотно-селективных искажений, представленных во втором и четвертом столбцах, наблюдается существенное снижение вероятности правильного обнаружения сигнала Р в прототипе до 0,382 и 0,412 соответственно, по сравнению со случаем отсутствия искажений, при котором РД исх=0,985. Это объясняется неблагоприятными условиями искажений, сложившимися в данный момент времени для сигнала, когда первая, наиболее интенсивная гармоника искажений находится в «противофазе» относительно основной части спектра сигнала. При благоприятных условиях, складывающихся в некоторый промежуток времени в канале связи (третий столбец таблицы), при которых амплитуда сигнала принятия решения увеличивается, следовательно увеличивается вероятность правильного обнаружения и становится равной P=0,994, что даже несколько больше исходной вероятности правильного обнаружения. Но поскольку параметры частотно-селективных искажений изменяются по случайному равновероятному закону, то, следовательно, с равной вероятностью в канале будут возникать как благоприятные, так и неблагоприятные условия, при которых сигнал может вообще не обнаруживаться.

Наличие дополнительных каналов обнаружения в предлагаемом способе и реализуемый алгоритм принятия решения выравнивает и существенно улучшает результирующую вероятность правильного обнаружения сигнала, которая в данном примере не уменьшается ниже 0,94. Это объясняется спецификой механизма работы данного обнаружителя: если в основном канале условия обнаружения ухудшаются, то в дополнительных каналах в тот же промежуток времени они улучшаются автоматически, что и обеспечивает достаточный уровень и постоянство результирующей вероятности правильного обнаружения.

Таким образом, выигрыш в помехоустойчивости обнаружения сигнала предлагаемого способа по сравнению с прототипом свидетельствует о наличии причинно-следственной связи между совокупностью существенных признаков и достигаемым техническим результатом.

На фиг.1 представлена структурная электрическая схема устройства, реализующая предлагаемый способ обнаружения сигнала, а на фиг.2 - частотные и временные диаграммы, поясняющие сущность предлагаемого способа.

Устройство (фиг.1) содержит согласованный фильтр 1, неуправляемое пороговое устройство 2, вычислитель 3 моментов опорных отсчетов, в общем случае τ1, τ2, вычислитель 4 коэффициентов корреляции шума в опорных отсчетах r(τ1), r(τ2) на выходе согласованного фильтра, измерители 5 и 6 суммарного значения остаточного сигнала и шума, соответственно, в первом и во втором опорных отсчетах Uсш1), Uсш2), вычислители 7 и 8 значений порогов П(τ1) и П(τ2), элемент задержки 9 сигнала на время τ2, управляемые пороговые устройства 10 и 11 и решающее устройство 12.

Устройство работает следующим образом.

Искаженный импульсный информационный сигнал в смеси с белым шумом (при наличии сигнала) или один шум (при отсутствии сигнала) в ожидаемый момент времени поступает на вход согласованного фильтра 1. Одновременно на основе известной первой гармоники частотно-селективных искажений H1(ω,t) и известной формы исходного обнаруживаемого сигнала S(t) в вычислителе 3 определяют моменты опорных отсчетов τ1 и τ2 в соответствии с выражением (12). Сигналы моментов опорных отсчетов τ1 и τ2 с выхода вычислителя 3 поступают на вычислитель 4 коэффициентов корреляции выходного шума согласованного фильтра r(τ1) и r(τ2), которые определяют по выражению (28).

Одновременно сигналы моментов опорных отсчетов τ1 и τ2 с выхода вычислителя 3 поступают на первые разрешающие входы измерителей 5 и 6 суммарного значения остаточного сигнала и шума в этих опорных отсчетах, а сигнал τ2, кроме того, поступает на первый управляющий вход элемента задержки 9, на вторые входы которых поступает сигнал, смешанный с шумом (или только один шум), с выхода согласованного фильтра 1.

С выходов измерителей 5 и 6 значения остаточного сигнала и шума Uсш1) и Uсш2) поступают на первые входы соответствующих вычислителей 7 и 8 значений порогов П(τ1) и П(τ2), на вторые входы которых поступают значения коэффициентов корреляции r(τ1) и r(τ2) с выхода вычислителя 4. При этом значения порогов П(τ1) и П(τ2) при заданной вероятности ложной тревоги определяют по выражению (1).

С выходов вычислителей 7 и 8 значения порогов поступают на первые управляющие входы управляемых пороговых устройств 10 и 11, на вторые информационные входы которых поступает сигнал с выхода согласованного фильтра 1. Причем на управляемое пороговое устройство 11 этот сигнал поступает через элемент задержки 9. Одновременно сигнал с выхода согласованного фильтра 1 поступает на неуправляемое пороговое устройство 2, порог которого определяют в соответствии с выражением (2). Сигналы с выходов управляемых пороговых устройств 10 и 11 и неуправляемого порогового устройства 2 поступают на объединяющее решающее устройство 12, формирующее решение о наличии или отсутствии сигнала на входе устройства и работающее по правилу: сигнал обнаруживается, если хотя бы на выходе одного из пороговых устройств 2, 10 или 11 он регистрируется.

На фиг.2,а представлены частотные диаграммы спектров на выходе согласованного фильтра исходного сигнала 1, построенного в соответствии с выражением (26), искаженного спектра 2 при наличии только первой наиболее интенсивной искажающей гармоники, находящейся в «фазе» с основной частью спектра исходного сигнала, построенного по выражению (7) при знаке (+) и искаженного спектра 3, когда искажающая гармоника находится в «противофазе» с основной частью спектра сигнала, построенного по выражению (7) при знаке (-). Спектральные плотности нормированы по максимальному значению выходного спектра исходного сигнала Sвых(0), а частота нормирована по полосе частот выходного сигнала Δωвых, определяемой на уровне 0,1 от максимального значения.

На фиг.2,б представлены временные диаграммы исходного сигнала 1 на выходе согласованного фильтра, построенного по выражению (27), соответствующего спектру 1 на фиг.2,а и искаженных сигналов 2 и 3, построенных по выражению (11), соответственно, при знаках (+) и (-) и соответствующие спектрам 2 и 3 на фиг.2,а. Амплитуды сигналов нормированы по максимальному значению выходного сигнала Sвых(0), а время нормировано по длительности выходного сигнала, определяемого на уровне 0,1 от максимального значения. Моменты времени ±τ0 являются моментами опорных отсчетов для реализации дополнительных второго и третьего каналов обнаружения сигнала.

Из фиг.2 следует, и это согласуется с данными, представленными в таблице, что при благоприятных условиях, складывающихся в канале связи, когда искажающая гармоника находится в «фазе» с основной частью спектра сигнала, его амплитуда увеличивается и даже превышает амплитуду исходного сигнала, что обеспечивает высокую достоверность обнаружения по основному каналу при заданной вероятности ложной тревоги. При этом достоверность обнаружения по дополнительным каналам будет низкой по причине наличия значительного сигнала (подставки) в моменты опорных отсчетов.

В неблагоприятных условиях искажающая гармоника оказывается в «противофазе» с основной частью спектра сигнала, что приводит к значительному уменьшению его амплитуды (сигнал 3 на фиг.2,б) и, следовательно, к значительному снижению достоверности обнаружения по основному каналу. При этом достоверность обнаружения по дополнительным каналам увеличивается, поскольку значительно уменьшается составляющая сигнала в опорных отсчетах ±τ0, в которых в основном измеряется только шум, имеющий высокий коэффициент корреляции с шумом в информационном отсчете. По значению этого шума и коэффициенту корреляции в данных опорных точках r(±τ0) при заданной вероятности ложной тревоги по выражению (1) вычисляют оптимальные пороги, которые устанавливают в дополнительных каналах обнаружения. При этом, даже при малом уровне сигнала в информационном отсчете, но с оптимально выставленными порогами, достоверность обнаружения в дополнительных каналах увеличивается, что стабилизирует и значительно увеличивает результирующую достоверность обнаружения в данном способе.

В условиях сложной полигармонической модели частотно-селективных искажений частотно-временные диаграммы сигналов также будут иметь более сложный вид и изменяться во времени по случайному закону, но механизм обнаружения сигнала остается прежним, а наиболее вероятное положение опорных точек при этом будет определяться первой, наиболее интенсивной гармоникой искажений.

Характерным для данного способа обнаружения сигнала является то, что он инвариантен к причинам возникновения частотно-селективных искажений. Эти искажения могут возникать не только за счет особенностей распространения радиоволн, но и за счет воздействия на сигнал импульсных, узкополосных, а также имитационных помех, близких по структуре к информационному сигналу и попадающих в полосу частот соответствующего радиоканала. Главное, чтобы в процессе приема форма результирующего искаженного выходного сигнала согласованного фильтра за счет воздействия помех отличалась соответствующим образом от формы корреляционной функции выходного шума.

На основе априорной информации о структуре и параметрах этих помех можно определить наиболее вероятное положение моментов опорных отсчетов для реализации дополнительных каналов обнаружения и в целом, с учетом основного канала, можно в определенной степени нейтрализовать действие внешних помех и тем самым повысить результирующую помехоустойчивость при обнаружении или распознавании сигналов в сложных условиях помеховой обстановки.

В зависимости от скорости передачи сигналов частотно-селективные искажения могут быть как медленными, так и быстрыми (Финк Л.М. Теория передачи дискретных сообщений. М.: Сов. Радио, 1970, с.457). При медленных искажениях может быть принято несколько информационных сигналов, прежде чем изменится ситуация в канале связи, а при быстрых искажениях ситуация в канале может меняться с приемом каждого информационного сигнала. Поскольку в данном способе осуществляется поэлементный прием сигналов то, следовательно, он будет также инвариантен к скорости частотно-селективных искажений, что является важным обстоятельством для радиоэлектронных систем различного функционального назначения.

Из описания следует, что в состав устройства реализации данного способа обнаружения сигнала входят следующие блоки: согласованный фильтр 1, неуправляемое пороговое устройство 2, управляемые пороговые устройства 10 и 11, измерители 5 и 6 суммарного значения остаточного сигнала и шума в опорных отсчетах, элемент задержки 9 сигнала, а также решающее устройство 12, которые подробно описаны с конструктивными признаками их технической реализации в книге под редакцией Пестрякова В.Б. Шумоподобные сигналы в системах передачи информации. М.: Сов. Радио, 1973.

Вычислительные операции в данном способе, такие как вычисление моментов времени опорных отсчетов τ1 и τ2, вычисление коэффициентов корреляции шума на выходе согласованного фильтра r(τ1), r(τ2) и вычисление значений порогов П(τ1), П(τ2), которые соответственно представлены выражениями (12), (28) и (1), являются элементарными в технической реализации и могут быть реализованы в специально запрограммированном вычислителе.

Таким образом, предложенный способ обнаружения искаженных импульсных сигналов не имеет принципиальных ограничений при практическом исполнении и может быть реализован с применением известных функциональных устройств.

Способ обнаружения искаженных импульсных сигналов, включающий согласованную фильтрацию сигнала с последующим пороговым принятием решения о его наличии или отсутствии по выбранному критерию, отличающийся тем, что формируют два дополнительных канала обнаружения, в которых по известной форме исходного обнаруживаемого сигнала S(t) и заданной модели частотно-селективных искажений H(ω,t) определяют моменты времени τi, i=1, 2 опорных отсчетов, в которых измеряют суммарные значения остаточного сигнала и шума Uсшi) на выходе согласованного фильтра и вычисляют его коэффициенты корреляции r(τi) между опорными и информационным отсчетами, по которым при известной мощности выходного шума Рш согласованного фильтра и заданной вероятности ложной тревоги PF вычисляют значения порогов принятия решений по формуле которые, устанавливают в управляемых пороговых устройствах дополнительных каналов обнаружения, где - функция, обратная интегралу вероятности, при этом результирующее решение о наличии или отсутствии сигнала принимают на основе соответствующих частных решений по основному и дополнительным каналам обнаружения по правилу: сигнал обнаруживается, если хотя бы в одном из частных каналов обнаружения он регистрируется.



 

Похожие патенты:

Изобретение относится к радиолокационной технике и может найти применение в горноспасательных работах для дистанционного обнаружения жертв аварий, поиска заблудившихся и потерявшихся в лесу, терпящих бедствие в морских условиях рыбаков, особенно при плохой видимости, для поиска туристов, геологов, а также для дистанционного обнаружения пострадавших при чрезвычайных и иных обстоятельствах (несчастные случаи, боевые действия, катастрофы, стихийные бедствия, природные катаклизмы и т.д.).

Изобретение относится к области радиотехники и предназначено для цифровой свертки сигналов во временной области. .

Изобретение относится к радиотехнике, а именно к устройствам формирования и обработки сигналов для радиолокационных станций (РЛС) и может быть использовано, в частности, для формирования и обработки сигналов в РЛС с частотно-сканирующей антенной решеткой.

Изобретение относится к радио- и гидролокации. .

Изобретение относится к радиотехнике и может быть использовано в панорамных приемниках станций радиопомех, радиопеленгаторах и аналогичных устройствах для обнаружения наземных источников радиоизлучения, функционирующих в условиях шума неизвестной интенсивности.

Изобретение относится к радиотехнике и может использоваться в радиолокации, в частности в системах автоматического измерения угловых координат цели (угла места, азимута).

Изобретение относится к радиотехнике и может использоваться в когерентных накопитетелях импульсных сигналов, образованных некогерентной импульсной последовательностью.

Изобретение относится к технике приема и обнаружения импульсных радиосигналов при наличии сигналов мешающих отражений и белого шума и может быть использовано в системах передачи дискретной информации и в радиолокации.

Изобретение направлено на обнаружение квазидетерминированных гармоничных сигналов с неизвестными параметрами и известной огибающей на фоне шумов с неизвестной функцией распределения. Обнаружитель является адаптивным, обеспечивает стабилизацию уровня ложных тревог и учитывает фазочастотные характеристики принимаемых реализаций, что и является достигаемым техническим результатом. Количество оцениваемых параметров сведено к минимуму, что позволяет работать в условиях небольших интервалов пространственно-временной однородности. 1 ил.

Изобретение относится к радиолокации. Достигаемый технический результат - уменьшение потерь чувствительности канала обнаружения в условиях наличия множественных несинхронных импульсных помех (НИП) и взаимных помех. Указанный результат достигается тем, что в заявленном способе производится обнаружение сигналов от НИП на уровне межпериодной обработки и замена обнаруженных сигналов от НИП на коррелированные с сигналами местных предметов значения в каждой квадратурной составляющей с последующей реализацией межпериодного и внутрипериодного накопления. При этом для обнаружения НИП используется сигнал с выхода фазового детектора (ФД). Это позволяет реализовать защиту от НИП с незначительными потерями чувствительности, поскольку обнаружение НИП производится до когерентного внутри- и межпериодного накопления, а также позволяет реализовать защиту от НИП на фоне сигналов от местных предметов, так как появляется возможность вычитания сигналов от этих предметов из сигнала с выхода фазового детектора. 1 з.п. ф-лы, 6 ил.

Изобретение может быть использовано в панорамных радиоприемных устройствах систем радиомониторинга, станций радиопомех, радиолокационных систем, радиопеленгаторах, средствах радио и радиорелейной связи, а также других устройствах, в которых осуществляется обнаружение сигналов источников радиоизлучения, принимаемых на фоне шума с неизвестной интенсивностью. Достигаемый технический результат - уменьшение порогового отношения сигнал/шум на входе порогового блока обнаружителя панорамного приемника, определяющего его чувствительность при заданных значениях вероятности обнаружения и ложной тревоги, что соответствует увеличению дальности обнаружения источника радиоизлучения (ИРИ) и обеспечивает сокращение времени анализа радиоэлектронной обстановки в заданной анализируемой полосе частот для априори неизвестной загруженности полосы частот ИРИ. Указанный технический результат достигается за счет того, что устройство содержит два квадратурных фазовых детектора, косинусно-синусный генератор, четыре интегратора, три квадратичных детектора, сумматор, пороговый блок, три блока вычитания, два перемножителя, определенным образом соединенных между собой. 3 ил.

Изобретение относится к системам, использующим отражение или вторичное излучение радиоволн. Достигаемый технический результат изобретения - повышение характеристик обнаружения сигналов вторичных радиолокационных систем при низких отношениях сигнал/шум с сохранением точности измерения их параметров. Указанный результат достигается тем, что выполняют обработку принятых импульсных сигналов, при этом вычисляют значения порогов принятия решений и устанавливают их в пороговых устройствах каналов обнаружения. Для обработки принятых сигналов формируют два канала обнаружения - оптимальный канал и канал медианной фильтрации, которые работают независимо друг от друга. В оптимальном канале выполняют усреднение поступающих отсчетов принятых сигналов, а в канале медианной фильтрации выполняют их обработку медианным фильтром. Затем для каждого канала обнаружения вычисляют значение разности отсчетов и сравнивают его со значением порога принятия решения. В качестве значения порога принятия решения для оптимального канала используют константу, которая определяется эмпирически и зависит от крутизны фронтов обнаруживаемых импульсных сигналов, а для канала медианной фильтрации - переменную величину, зависящую от уровня шума (дисперсии шума) в каналах. Затем принимают решение о наличии или отсутствии сигналов, при этом каждый из принятых сигналов считается обнаруженным, если он регистрируется в обоих каналах обнаружения. 2 ил.

Изобретение относится к пассивным радиолокационным комплексам метрового и дециметрового диапазона. Техническим результатом изобретения является увеличение дальности обнаружения. Указанный результат достигается за счет когерентного приема сигналов, что реализуется путем использования в каждом приемном канале системы фазовой автоподстройки частоты канала и введением между смесителем и входом электронно-вычислительной машины (ЭВМ) последовательно соединенных полосового фильтра низкой частоты, усилителя низкой частоты, аналого-цифрового преобразователя. 3 ил.
Наверх