Расчетно-имитационный способ балансировки вала

Изобретение относится к машиностроению, может быть использовано при сборке и балансировке валов сборных роторов с магнитным подвесом компрессоров газоперекачивающих агрегатов (ГПА) и при его использовании позволяет снизить дисбаланс ротора, обусловленный эксцентриситетом его установки, что повышает точность балансировки. Указанный технический результат достигается тем, что на вал устанавливают магнитные сердечники, измеряют величины их максимального радиального биения относительно балансировочных поверхностей и их углы относительно контрольной точки вала, снимают сердечники, вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через их центры масс, в качестве плоскостей коррекции, определяют корректирующие массы участков вала, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции, устанавливают имитационные грузики в местах удаления материала, при этом углы мест установки имитационных грузиков относительно контрольной точки вала определяют из зависимости

а корректирующие массы (массы имитационных грузиков) из зависимости

где mк - корректирующая масса, mи - масса имитационного грузика, Mi - масса участка вала, D - диаметр участка вала в месте установки грузика, X, Y - координаты центров масс участков, при этом имитационные грузики снимают после окончания сборки и балансировки ротора. 3 ил.

 

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке сборных роторов с магнитным подвесом компрессоров газоперекачивающих агрегатов (ГПА).

Известен способ балансировки сборных роторов, описанный в ГОСТ ИСО 11342-95, при котором выбирают плоскости коррекции дисбалансов и балансируют вал по методике балансировки жесткого ротора.

Данный способ взят за прототип.

Недостатком известного способа является то, что после установки вала в составе ротора в корпус компрессора его вращение осуществляется с некоторым эксцентриситетом относительно той оси, по которой осуществлялась балансировка. Эксцентриситет обусловлен погрешностью обработки поверхностей, определяющих ось вращения ротора при работе.

Величина дисбаланса ротора, вызванного эксцентриситетом его установки, может достигать величин, превышающих допустимый уровень дисбаланса на порядки.

Так, например, ротор массой в 500 кг после балансировки имеет дисбаланс, не превышающий 150 г·мм в каждой плоскости коррекции. После монтажа с эксцентриситетом 8 мкм, что является допустимой величиной погрешности обработки поверхности магнитных сердечников, дисбаланс в каждой плоскости коррекции составит по 2000 г·мм, что в 13 раз больше допустимой величины дисбаланса.

Технической задачей настоящего изобретения является снижение дисбаланса вала ротора, обусловленного эксцентриситетом его установки, обеспечивающего повышение точности балансировки.

Технический результат достигается тем, что в способе, при котором выбирают плоскости коррекции дисбаланса и балансируют вал по методике балансировки жесткого ротора, на вал устанавливают магнитные сердечники, измеряют величины их максимального радиального биения относительно балансировочных поверхностей и их углы относительно контрольной точки вала, снимают сердечники, вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через их центры масс, в качестве плоскостей коррекции определяют корректирующие массы участков вала, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции, устанавливают имитационные грузики в местах удаления материала, при этом углы мест установки имитационных грузиков относительно контрольной точки вала определяют из зависимости

а корректирующие массы (массы имитационных грузиков) из зависимости

где mк - корректирующая масса, mи - масса имитационного грузика, Mi - масса участка вала, D - диаметр участка вала в месте установки грузика, X, Y - координаты центра масс участка, при этом имитационные грузики снимают после окончания сборки и балансировки ротора.

Снятие грузиков после балансировки позволяет приблизить ось отбалансированной массы вала к его оси вращения в составе компрессора.

Способ поясняется чертежами, представленными на фиг.1, 2, 3.

На фиг.1 поясняется измерение максимального биения поверхностей магнитных подшипников.

На фиг.2 поясняется определение плоскостей коррекции и коррекция дисбалансов.

На фиг.3 поясняется определение координат центров масс участков.

На чертежах обозначено:

1 - вал ротора;

2, 3 - магнитные сердечники;

4 - имитационные грузики на валу ротора;

a1, …, ai - плоскости коррекции вала;

A, Б - балансировочные поверхности вала;

B, Г - рабочие поверхности ротора;

Е - места съема металла в плоскостях коррекции вала.

Способ осуществляется следующим образом.

Вал 1 ротора (фиг.1) со смонтированными на нем магнитными сердечниками 2, 3 устанавливается на измерительные призмы поверхностями А, Б. Относительно этих поверхностей производится измерение величины максимального биения поверхностей В, Г магнитных сердечников, а углы этих максимальных радиальных биений - относительно контрольной точки вала. Эксцентриситеты центров масс магнитных сердечников определяют из зависимости

а координаты центров масс из зависимости

;

,

где ΔDi - максимальное радиальное биение магнитного сердечника, αi - угол максимального радиального биения магнитного сердечника.

Разбивают вал на участки, определяют массы участков (Mi) и положение центров масс участков, например, с использованием САПР.

Выбирают в качестве плоскостей коррекции дисбаланса плоскости поперечного сечения участков, которые проходят через центры масс участков.

Определяют координаты центров масс участков

где za1, …, zai - расстояние от торца ротора до соответствующего сечения.

Определяют корректирующие массы и массы имитационных грузиков из зависимости

Определяют углы мест снятия материала участков вала и установки имитационных грузиков относительно контрольной точки вала из зависимости

Корректируют дисбалансы участков, при этом производят съем металла в местах Е. Устанавливают на места съема металла имитационные грузики 4.

Балансируют вал по технологии, предусмотренной для жестких валов.

По окончании сборки и балансировки ротора все имитационные грузики снимают, что позволяет избавиться от дисбаланса вала в составе ротора при переходе с балансировочных на рабочие поверхности.

Таким образом, применение предлагаемого способа многократно снижает дисбаланс ротора, обусловленный эксцентриситетом его установки, что повышает точность балансировки.

Расчетно-имитационный способ балансировки вала, при котором выбирают плоскости коррекции дисбалансов, балансируют вал по методике балансировки жесткого ротора, отличающийся тем, что на вал устанавливают магнитные сердечники, измеряют величины их максимального радиального биения относительно балансировочных поверхностей и их углы относительно контрольной точки вала, снимают сердечники, вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через их центры масс, в качестве плоскостей коррекции, определяют корректирующие массы участков вала, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции, устанавливают имитационные грузики в местах удаления материала, при этом углы мест установки имитационных грузиков относительно контрольной точки вала определяют из зависимости:

а корректирующие массы (массы имитационных грузиков) из зависимости:

где mк - корректирующая масса, mи - масса имитационного грузика, Mi - масса участка вала, D - диаметр участка вала в месте установки грузика, X, Y - координаты центров масс участков, при этом имитационные грузики снимают после окончания сборки и балансировки ротора.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке сборных роторов компрессоров газоперекачивающих агрегатов. .

Изобретение относится к технике глушения шума компрессорных станций и испытательных боксов для газотурбинных двигателей. .

Изобретение относится к технике глушения шума компрессорных станций и испытательных боксов для газотурбинных двигателей. .

Изобретение относится к средствам глушения аэродинамического шума пневматических двигателей. .

Изобретение относится к технике глушения шума компрессорных станций. .

Изобретение относится к туннельным вентиляторам, устанавливаемым в воздуховодах для транспортировки воздуха, и обеспечивает при своей работе достижение более высокого давления в воздуховоде и снижение уровня шума.

Изобретение относится к машиностроению и может использоваться для перекачивания нефтепродуктов, имеющих температуру до +200°С. .

Изобретение относится к рабочим колесам осевых вентиляторов, компрессоров, насосов и турбин и может использоваться в воздушных и гребных винтах. .

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке сборных роторов компрессоров газоперекачивающих агрегатов. .

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке сборных роторов компрессоров газоперекачивающих агрегатов

Изобретение относится к области насосостроения и может быть использовано для перекачки различных жидкостей, например, в системах отопления вагонов, судов, других замкнутых систем, когда требуются высокие антикавитационные качества и минимальные уровни шума и вибрации

Изобретение относится к вентиляторостроению, может быть использовано в составе систем терморегулирования изделий космической техники и позволяет повысить технологичность и расширение области использования и снижение массы

Изобретение относится к улучшенным типам роторных насосов, приводимых в действие электродвигателем, которые, в частности, позволяют избежать проблем, связанных с ударными шумами и дребезжанием, нестабильной или ненадежной работой и т.п., особенно в конкретных применениях

Изобретение относится к нефтедобывающей отрасли и может быть использовано для гашения вибрации, предотвращения маятникового эффекта, предохранения электрокабеля от механических повреждений

Изобретение относится к области машиностроения и может быть использовано при балансировке роторов с магнитными подвесами компрессоров газоперекачивающих агрегатов

Изобретение относится к вентиляторостроению и позволяет при его использовании обеспечить расширение области устойчивой работы и промышленного использования вентилятора путем уменьшения вращающегося срыва в его лопаточных венцах

Изобретение относится к насосостроению и может быть использовано для перекачки жидкостей

Изобретение относится к радиальным вентиляторам
Наверх