Защитный жилет от электромагнитного излучения

Изобретение относится к средствам индивидуальной защиты работников от электромагнитного излучения. Защитный жилет от электромагнитного излучения состоит из тканевой подкладки, соединенной с защитной оболочкой, а в тканевой подкладке закреплены упругие каркасные стойки посредством фиксаторов на поясном ремне, а защитная оболочка крепится на упругих каркасных стойках. При этом защитная оболочка выполнена трехслойной, причем первый слой, обращенный в окружающую оператора среду, выполнен в виде связанных между собой колец, а третий слой, обращенный к телу оператора, выполнен из перфорированного полимерного материала, например арамидного волокна, а второй слой, расположенный между ними, выполнен упругим из упругих сетчатых элементов, а в качестве материала колец использована нержавеющая сталь, которая обработана композиционным материалом с повышенными защитными свойствами от электромагнитного излучения. Техническим результатом изобретения является повышение степени защиты операторов от электромагнитного излучения. 1 з.п., 4 ил.

 

Изобретение относится к средствам индивидуальной защиты работников от электромагнитного излучения.

Наиболее близким техническим решением к заявляемому объекту является жилет защитный по патенту РФ №2284739, состоящий из тканевой подкладки, соединенной с защитной оболочкой, а в тканевой подкладке закреплены упругие каркасные стойки посредством фиксаторов на поясном ремне, а защитная оболочка крепится на упругих каркасных стойках (прототип).

Недостатком известного устройства является сравнительно невысокая степень защиты из-за тканевой основы.

Технический результат предлагаемого изобретения - повышение степени защиты операторов от электромагнитного излучения.

Это достигается тем, что в защитном жилете от электромагнитного излучения, состоящем из тканевой подкладки, соединенной с защитной оболочкой, а в тканевой подкладке закреплены упругие каркасные стойки посредством фиксаторов на поясном ремне, а защитная оболочка крепится на упругих каркасных стойках, при этом защитная оболочка выполнена трехслойной, причем первый слой, обращенный в окружающую оператора среду, выполнен в виде связанных между собой колец, а третий слой, обращенный к телу оператора, выполнен из перфорированного полимерного материала, например арамидного волокна, а второй слой, расположенный между ними, выполнен упругим из упругих сетчатых элементов, а в качестве материала колец использована нержавеющая сталь, которая обработана композиционным материалом с повышенными защитными свойствами от электромагнитного излучения.

На фиг.1 изображена профильная проекция предлагаемого защитного жилета, на фиг.2 - фронтальная проекция, на фиг.3 - схема защитной оболочки, на фиг.4 - структура композиционного материала.

Защитный жилет от электромагнитного излучения состоит из тканевой подкладки 1, в которой закреплены упругие каркасные стойки 2 посредством фиксаторов 4 на поясном ремне. Защитная оболочка 3 крепится на упругих каркасных стойках 2. Защитная оболочка 3 может быть закреплена на каркасных стойках 2 по всей площади торса человека-оператора, включая и плечевые суставы, и кисти рук (не показано).

Защитная оболочка 3 выполнена трехслойной, причем первый слой, обращенный в окружающую оператора среду, выполнен в виде связанных между собой колец, в качестве материала которых использована нержавеющая сталь, которая обработана композиционным материалом с повышенными защитными свойствами от электромагнитного излучения. Третий слой 5, обращенный к телу оператора, выполнен из перфорированного полимерного материала, например арамидного волокна, а второй слой 6, расположенный между ними, выполнен упругим из упругих сетчатых элементов. При этом плотность сетчатой структуры упругих сетчатых элементов находится в оптимальном интервале величин 1,2 г/см3…2,0 г/см3, причем материал проволоки упругих сетчатых элементов - сталь марки ЭИ-708, а, диаметр ее находится в оптимальном интервале величин 0,09 мм…0,15 мм.

Композиционный материал для защиты от электромагнитного излучения состоит из полимерной основы с частицами 7 и 9, в которой распределены частицы 8 соединений -(Fe, Si) или -Co с нанокристаллической структурой объемной плотностью (0,6÷4,4)·10-5 1/нм3. Полимерная основа для фиксации положения частиц порошка с нанокристаллической структурой выполнена в виде чередующихся между собой элементов структуры с частицами 7 и 9, расположенных под углом 90° друг к другу, а каждый из элементов с частицами выполнен в виде расположенных в параллельных рядах частиц вытянутой формы, причем частицы, расположенные слева и справа от нее, сдвинуты на величину, не превышающую половины максимального размера частицы. Использование в качестве наполнителя материала, обладающего нанокристаллической структурой, обеспечивает увеличение магнитной проницаемости.

Экспериментально установлено, что при объемной плотности нанокристаллов в аморфной матрице менее 0,6·10-5 1/нм3 эффект повышения значения магнитной проницаемости не наблюдается. При объемной плотности нанокристаллов в аморфной матрице больше, чем 1,4·10-5 1/нм3, происходит уменьшение значения магнитной проницаемости. Следовательно, оптимальным является следующий диапазон значений объемной плотности нанокристаллов в аморфной матрице: больше 0,6·10-5 1/нм3, но менее 1,4·10-5 1/нм3.

Защитный жилет от электромагнитного излучения осуществляет также защиту человека-оператора от внезапных ударов со стороны как механического воздействия окружающей среды, так и, например, животных типа крупного рогатого скота. Выполнение каркасных стоек 2 упругими позволяет сдемпфировать удар (сделать его упругим), а защитная оболочка 3 предотвратит ранение кожного покрова человека-оператора.

Композиционный материал работает следующим образом.

Электромагнитная волна, проникшая в глубь материала, интенсивней поглощается в нем за счет более высокой поглощающей способности нанокристаллической структуры, обладающей большей магнитной проницаемостью по сравнению с аморфной. При достижении электромагнитной волной противоположной поверхности происходит ее большее поглощение, что приводит к повышению коэффициента экранирования.

Технико-экономическая эффективность предлагаемого изобретения выразится в снижении толщины и уменьшении массогабаритных характеристик композиционного материала, что позволит повысить надежность работы электронных и электротехнических средств, обеспечить эффективную защиту биологических объектов за счет повышения магнитной проницаемости композиционного материала и, как следствие, коэффициента экранирования электромагнитных полей радиочастотного диапазона.

При объемной плотности нанокристаллов -(Fe, Si) или -Co (0,6÷1,4)·10-5 1/нм3 магнитная проницаемость композитов по сравнению с аморфным состоянием увеличивается в 2-3 раза и составляет от 90 до 135 ед.

1. Защитный жилет от электромагнитного излучения, состоящий из тканевой подкладки, соединенной с защитной оболочкой, а в тканевой подкладке закреплены упругие каркасные стойки посредством фиксаторов на поясном ремне, а защитная оболочка крепится на упругих каркасных стойках, при этом защитная оболочка выполнена трехслойной, причем первый слой, обращенный в окружающую оператора среду, выполнен в виде связанных между собой колец, а третий слой, обращенный к телу оператора, выполнен из перфорированного полимерного материала, например арамидного волокна, а второй слой, расположенный между ними, выполнен упругим из упругих сетчатых элементов, отличающийся тем, что в качестве материала колец использована нержавеющая сталь, которая обработана композиционным материалом с повышенными защитными свойствами от электромагнитного излучения.

2. Защитный жилет от электромагнитного излучения по п.1, отличающийся тем, что композиционный материал для защиты от электромагнитного излучения состоит из полимерной основы, в которой распределены частицы соединений -(Fe, Si) или -Со с нанокристаллической структурой объемной плотностью (0,6÷1,4)·10-5 1/нм3, при этом полимерная основа для фиксации положения частиц порошка с нанокристаллической структурой выполнена в виде чередующихся между собой элементов структуры, расположенных под углом 90° друг к другу, а каждый из элементов выполнен в виде расположенных в параллельных рядах частиц вытянутой формы, причем частицы, расположенные слева и справа от нее, сдвинуты на величину, не превышающую половины максимального размера частицы, при этом оптимальным является следующий диапазон значений объемной плотности нанокристаллов в аморфной матрице: больше 0,6·10-5 1/нм3, но менее 1,4·10-5 1/нм.



 

Похожие патенты:

Изобретение относится к средствам для персональной защиты. .

Изобретение относится к материалам для средств индивидуальной защиты и может быть использовано в бронежилетах, предназначенных для защиты от осколков, остроконечных пуль стрелкового оружия и колюще-режущего оружия, различных пуль короткоствольного стрелкового оружия.

Изобретение относится к области вооружения, к разработкам средств защиты. .

Изобретение относится к технологии получения формованных изделий в виде волокон, нитей, пленок из гетероциклических ароматических полиамидоимидов, содержащих бензимидазольные фрагменты, и может быть использовано для производства тканей специального назначения или композиционных материалов.

Изобретение относится к средствам защиты и может использоваться в оборонной промышленности для создания средств защиты людей и техники от действия механических средств поражения.
Изобретение относится к травмозащитному пакету и может быть использовано для изготовления изделий для защиты тела, в частности пуленепробиваемого жилета. .

Изобретение относится к устройствам для испытания амортизационной способности бронежилета при воздействии ударной нагрузки. .

Изобретение относится к устройствам для определения защитных свойств бронешлемов. .

Изобретение относится к средствам индивидуальной бронезащиты. .
Изобретение относится к области металлургии и к области бронезащиты, а именно к свариваемой противопульной броневой стали, применяемой для противопульной защиты автомобилей, спецвагонов и других легкобронированных машин.

Изобретение относится к защите от коррозии металлов и их порошков, функционирующих во влажной воздушной атмосфере с агрессивными примесями и в составах индустриальных смазочных материалов.

Изобретение относится к области химии и может быть использовано для формирования нанокомпозитного покрытия на пористом слое оксида алюминия. .

Изобретение относится к области наноразмерных и наноструктурированных материалов. .

Изобретение относится к медицине, в частности к онкологии, и касается лечения опухолей лазерной гипертермией. .

Изобретение относится к медицине, а именно к комбустиологии, пластической хирургии, косметологии, и может найти применение в качестве биоматериала для замещения дефектов покровных тканей и стимуляции регенерации.

Изобретение относится к технике контроля материалов и изделий и может быть использовано для измерения параметров рельефа поверхности и механических характеристик материалов с субмикронным и нанометровым пространственным разрешением.

Изобретение относится к способу получения антифрикционных покрытий и может использоваться в машиностроении, в частности для станков и приборов, имеющих в конструкции узлы трения/скольжения.
Изобретение относится к огнезащитным вспучивающимся композициям для получения покрытий, которые могут быть использованы в авиастроении, автомобилестроении, строительстве, химической промышленности.

Изобретение относится к вулканизуемому пероксидами резиновому нанокомпозитному компаунду. .
Изобретение относится к области каталитической химии, а именно к приготовлению катализатора с наноразмерными частицами платины на углеродном носителе, используемого в химических источниках тока, в частности в топливных элементах с твердым полимерным электролитом.

Изобретение относится к области нанотехнологии и может быть использовано в мобильных оптоэлектронных средствах, системах, имеющих ограничения по массогабаритным характеристикам, потребляемой мощности.;в средствах наблюдения и разведки: при большой освещенности; в зимний период, в прибрежной полосе, при применении ослепляющих технических средств; в ночное время суток; при наличии маскирующих факторов покрытий, замаскированных под снег, солнечных бликов;в системах: синтеза зональных изображений в диапазоне ультрафиолета, при работе с тепловизионными, телевизионными техническими средствами; наведения, прицеливания, высокоточного оружия
Наверх