Смесь для изготовления теплоизоляции

Изобретение относится к теплоизоляционным материалам, в частности к составам смесей для изготовления теплоизоляции, используемой в металлургии. Технический результат: получение теплоизоляционного материала, имеющего низкую усадку в более широком температурном интервале, что обеспечивает, как следствие, более высокую температуростойкость. Смесь для изготовления теплоизоляции включает известь и кремнеземистый компонент в пересчете на СаО и SiO2 в соотношении 0,2-2 и наполнитель в виде волластонита аморфной структуры. Дополнительно к волластониту аморфной структуры введено базальтовое волокно длиной 13-15 мм при соотношении ее к диаметру от 8000 до 9000. Соотношение компонентов смеси в составляет, мас.%: наполнитель - смесь волластонита аморфной структуры с базальтовым волокном 50-60, известь и кремнеземистый компонент 40-50. 4 табл.

 

Изобретение относится к теплоизоляционным материалам, в частности к составам смесей для изготовления теплоизоляции, используемой в металлургии.

Известна смесь для изготовления теплоизоляции, включающая известь, кремнеземистый компонент и наполнитель из волластонита кристаллической и аморфной структуры в соотношении 50:50.

Смесь содержит компоненты в следующих соотношениях, мас.%:

Известь (на СаО) 4-10
Кремнеземистый компонент (на SiO2) 6-12
Наполнитель (смесь волластонита
кристаллической структуры
с волластонитом аморфной структуры
в соотношении 50:50) - остальное

(RU №2057738, МПК С04В 28/18, от 08.07.1993, опубл. 10.04.1996 г.).

Смесь готовили перемешиванием предварительно приготовленной смеси волластонита кристаллического и аморфного с известью в виде известкового молока, кремнеземистым компонентом и водой.

Недостатком данного состава является высокая усадка и низкая температуростойкость при высоких температурах.

Известно также использование в сырьевой смеси для получения теплоизоляции на основе кремнеземсодержащего компонента и извести базальтового волокна в качестве волокнистого наполнителя (GB 1280993 А, С04В 28/18, 12.07.1972), но для достижения минимальной усадки изделий требуется определенное базальтовое волокно.

Наиболее близким аналогом является сырьевая смесь для изготовления теплоизоляции по US 4128434 А, С04В 28/18, 05.12.1978.

Известная сырьевая смесь содержит, вес.ч.: известь в расчете на СаО 15-40, кремнеземсодержащий компонент в расчете на SiO2 20-40, волластонит 15-40, минеральное волокно до 15.

Задачей предлагаемого состава является получение теплоизоляционного материала, имеющего низкую усадку в более широком температурном интервале, что обеспечивает, как следствие, более высокую температуростойкость.

Достигается это тем, что смесь для изготовления теплоизоляции, включающая известь и кремнеземистый компонента в пересчете на СаО и SiO2 в соотношении 0,2-2,0 и наполнитель в виде волластонита аморфной структуры, согласно изобретению дополнительно к волластониту аморфной структуры введено базальтовое волокно длиной 13-15 мм при соотношении ее к диаметру от 8000 до 9000, при следующем соотношении компонентов, мас.%:

Наполнитель 50-60
(смесь волластонита
аморфной структуры
с базальтовым волокном)
Известь и кремнеземистый
компонент в пересчете
соответственно на СаО и SiO2
в соотношении 0,2-2 40-50

В этом состоит новый технический результат, находящийся в причинно-следственной связи с существенными признаками изобретения.

В сравнении с прототипом в заявляемом составе произведена замена волластонита кристаллической структуры на базальтовое волокно, что позволяет значительно снизить напряжения, возникающие в момент фазового перехода тоберморита, как продукта взаимодействия извести и кремнеземистого компонента, в β-волластонит. Компенсация напряжений в заявляемой теплоизоляционной смеси происходит, кроме того, благодаря волокнистой структуре как самого аморфного волластонита, так и введенных дополнительно базальтовых волокон с заданным соотношением длины волокон к их диаметру. Обеспечение в заявляемой смеси соотношения извести к кремнеземистому компоненту в пересчете соответственно на СаО и SiO2 в пределах 0,2-2,0, дополнительного введения в наполнитель к аморфоному волластониту базальтового волокна в соотношении 40:60, а также обеспечение заявляемых оптимальных размеров базальтового волокна (длина базальтового волокна 13-15 мм, при этом соотношение длины базальтового волокна к диаметру от 8000 до 9000) приводит к существенному снижению усадки при температуре 800-900°С.

Состав для теплоизоляции реализуется следующим образом. В пропеллерную мешалку заливается вода, далее подается известь в виде известкового молока, кремнеземистый компонент и наполнитель. Механическая смесь наполнителя готовилась предварительно в смесителе. При этом соотношение аморфного волластонита и базальтовых волокон поддерживалось на уровне 40:60. В качестве аморфного волластонита использован синтетический волластонит, получаемый синтезом аморфных кремнистых (опока, диатомит, трепел) и карбонатных пород (мел, известняк). После операции смешивания наполнитель представлял однородную смесь, помещаемую в дальнейшем в пропеллерную мешалку. Соотношение твердых компонентов и воды поддерживалось 1:1, время перемешивания в смесителе 15 мин. Усредненная в пропеллерной мешалке масса заливается в разъемные формы. Распалубленные и высушенные изделия подвергаются сушке и автоклавному твердению при давлении 1-2 МПа и температуре 180°С. Продолжительность автоклавирования - 24 ч. Последующая термообработка осуществляется при температурах 600-900°С. Составы смесей для изготовления теплоизоляции, а также показатель усадки в сравнении с прототипом представлены в таблице 1. Анализ данных табл.1 свидетельствует, что при равном содержании наполнителя в смеси (например, при 50 мас.%) наименьшую усадку имеют составы теплоизоляционной смеси при соотношении в смеси извести и кремнеземстого компонента в пересчете соответственно на СаО и SiO2 от 0,2 до 2,0. Данный диапазон выбран оптимальным, так как при соотношении СаО/SiO2 от 0,2 до 2,0 наблюдается минимальная усадка. При изменении заявляемого соотношения наблюдается тенденция повышения усадки во всем диапазоне температур.

Таблица 1
Номер состава Массовое соотношение в смеси извести и кремнеземистого компонента СаО/SiO2 в пересчете соответственно на СаО и SiO2 Содержание наполнителя в смеси, мас.% Усадка при температуре, %
650 700 750 800 850 900
Прототип - 0,50 - - 2,00
1 0,1 50 0,50 0,52 0,56 1,50 1,47 1,65
2 0,2 50 0,44 0,49 0,54 1,50 1,38 1,57
3 1,0 50 0,42 0,49 0,54 1,50 1,38 1,56
4 1,5 50 0,40 0,45 0,50 1,10 1,30 1,50
5 2,0 50 0,30 0,32 0,42 0,96 1,20 1,50
6 2,1 50 0,52 0,54 0,58 1,52 1,54 1,59

В таблице 2 приведены данные по усадке теплоизоляционной смеси в интервале температур 650-900°С при постоянном наиболее благоприятном массовом соотношении в смеси извести и кремнеземистого компонента (СаО/SiO2) - 2,0 при изменении содержания наполнителя в заявляемых пределах.

Таблица 2
Номер состава Массовое соотношение в смеси извести и кремнеземистого компонента - СаО/SiO2 Содержание наполнителя в смеси, мас.% Усадка при температуре, %
650 700 750 800 850 900
1 2,0 40 0,39 0,45 0,49 1,25 1,84 1,75
2 2,0 50 0,30 0,32 0,42 0,96 1,20 1,50
3 2,0 60 0,28 0,28 0,35 0,88 1,15 1,32
4 2,0 70 0,33 0,39 0,46 1,15 1,56 1,71

Анализ данных табл.2 свидетельствует, что при равном массовом соотношении в смеси извести и кремнеземистого компонента (например, 2,0) наименьшую усадку имеют составы теплоизоляционной смеси при содержании наполнителя в смеси в пределах 50-60 мас.%. Данный диапазон выбран оптимальным, так как при содержании наполнителя 50-60 мас.% наблюдается минимальная усадка. При изменении заявляемого содержания наполнителя наблюдается тенденция повышения усадки во всем диапазоне температур.

В табл.3 приведены данные по усадке теплоизоляционной смеси в интервале температур 650-900°С при постоянном наиболее благоприятном массовом соотношении в смеси извести и кремнеземистого компонента (СаО/SiO2) - 2,0, при постоянном содержании наполнителя в оптимальном количестве 60 мас.% при изменении соотношения в наполнителе аморфного волластонита и базальтового волокна в заявляемых пределах.

Таблица 3
Номер состава Массовое соотношение в смеси извести и кремнеземистого компонента - СаО/SiO2 Содержание наполнителя в смеси, мас.% Соотношение в наполнителе аморфного волластонита и базальтового волокна Усадка при температуре, %
650 700 750 800 850 900
1 2,0 60 60:40 0,41 0,55 0,65 1,75 2,04 2,75
2 2,0 60 50:50 0,34 0,39 0,55 1,24 1,36 1,50
3 2,0 60 40:60 0,28 0,28 0,35 0,88 1,15 1,32
4 2,0 60 30:70 0,33 0,39 0,49 1,20 1,28 1,65

Анализ данных табл.3 свидетельствует, что при равном массовом соотношении в смеси извести и кремнеземистого компонента (например, 2,0), равном содержании наполнителя в смеси 60 мас.% наименьшую усадку имеют составы теплоизоляционной смеси при соотношении в наполнителе аморфного волластонита и базальтового волокна в пределах 40:60. Данное соотношение выбрано оптимальным, так как при соотношении в наполнителе аморфного волластонита и базальтового волокна 40:60 наблюдается минимальная усадка. При изменении заявляемого соотношения наблюдается тенденция повышения усадки во всем диапазоне температур.

В табл.4 приведены данные по усадке теплоизоляционной смеси в интервале температур 650-900°С при постоянном наиболее благоприятном массовом соотношении в смеси извести и кремнеземистого компонента (СаО/SiO2) - 2,0, при постоянном содержании наполнителя в оптимальном количестве 60 мас.%, при оптимальным соотношении в наполнителе аморфного волластонита и базальтового волокна 40:60 при изменении соотношения длины базальтового волокна к диаметру в заявляемых пределах.

Таблица 4
№ состава Массовое соотношение в смеси извести и кремнеземистого компонента СаО/SiO2 Содержание наполни теля в смеси, мас.% Соотношение длины базальтового волокна к диаметру Усадка при температуре, %
650 700 750 800 850 900
1 2,0 60 7000 0,42 0,57 0,68 1,70 1,94 2,05
2 2,0 60 8000 0,32 0,33 0,45 1,04 1,21 1,38
3 2,0 60 9000 0,28 0,28 0,35 0,88 1,15 1,32
4 2,0 60 1000 0,39 0,49 0,59 1,80 1,98 2,65

Анализ данных табл.4 свидетельствует, что при равном массовом соотношении в смеси извести и кремнеземистого компонента (например, 2,0), равном содержании наполнителя в смеси (например, 60 мас.%), оптимальном соотношении в наполнителе аморфного волластонита и базальтового волокна в пределах 40:60, наименьшую усадку имеют составы теплоизоляционной смеси при соотношении длины базальтового волокна к диаметру от 8000 до 9000.

Данное соотношение выбрано оптимальным, так как при соотношении длины базальтового волокна к диаметру от 8000 до 9000 наблюдается минимальная усадка. При изменении заявляемого соотношения наблюдается тенденция повышения усадки во всем диапазоне температур.

СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОИЗОЛЯЦИИ, ВКЛЮЧАЮЩАЯ ИЗВЕСТЬ, КРЕМНЕЗЕМИСТЫЙ КОМПОНЕНТ В ПЕРЕСЧЕТЕ СООТВЕТСТВЕННО НА САО И SIO 2 В СООТНОШЕНИИ 0,2-2 И НАПОЛНИТЕЛЬ В ВИДЕ ВОЛЛАСТОНИТА АМОРФНОЙ СТРУКТУРЫ, ОТЛИЧАЮЩАЯСЯ ТЕМ, ЧТО ДОПОЛНИТЕЛЬНО К ВОЛЛАСТОНИТУ АМОРФНОЙ СТРУКТУРЫ ВВЕДЕНО БАЗАЛЬТОВОЕ ВОЛОКНО ДЛИНОЙ 13-15 ММ ПРИ СООТНОШЕНИИ ЕЕ К ДИАМЕТРУ ОТ 8000 ДО 9000 ПРИ СЛЕДУЮЩЕМ СООТНОШЕНИИ КОМПОНЕНТОВ СМЕСИ, МАС.%:

НАПОЛНИТЕЛЬ
(СМЕСЬ ВОЛЛАСТОНИТА
АМОРФНОЙ СТРУКТУРЫ
С БАЗАЛЬТОВЫМ ВОЛОКНОМ) 50 - 60
ИЗВЕСТЬ И КРЕМНЕЗЕМИСТЫЙ
КОМПОНЕНТ В ПЕРЕСЧЕТЕ
СООТВЕТСТВЕННО НА САО И SIO 2
В СООТНОШЕНИИ 0,2 - 2 40 - 50


 

Похожие патенты:
Изобретение относится к производству стеновых материалов. .

Изобретение относится к промышленности строительных материалов, а именно к производству силикатного кирпича. .

Изобретение относится к промышленности строительных материалов, может быть использовано при изготовлении силикатных стеновых изделий - плиток, кирпича, блоков, стеновых панелей.

Изобретение относится к строительству и стройиндустрии и может быть использовано в производстве гидравлических минеральных композиционных вяжущих, разновидностей сухих строительных смесей, при изготовлении легких бетонов и изделий теплоизоляционно-конструкционного назначения для строительства ограждающих конструкций зданий и сооружений.

Изобретение относится к строительным материалам и может быть использовано при производстве вяжущих материалов для автоклавных изделий. .

Изобретение относится к промышленности строительных материалов, конкретно к получению прессованных изделий автоклавного твердения. .

Изобретение относится к производству строительных материалов и может быть использовано для получения силикатных стеновых изделий - силикатного кирпича, плиток, блоков, стеновых панелей, твердеющих при автоклавной обработке.

Изобретение относится к производству строительных материалов и может быть использовано для получения силикатных стеновых изделий - силикатного кирпича, плиток, блоков, стеновых панелей, твердеющих при автоклавной обработке.

Изобретение относится к производству строительных материалов и может быть использовано для получения силикатных стеновых изделий - силикатного кирпича, плиток, блоков, стеновых панелей и т.п., подвергающихся автоклавной обработке при твердении.

Изобретение относится к производству строительных материалов и может быть использовано для получения бетонных строительных изделий, подвергающихся тепловлажностной обработке при твердении, для гражданского и промышленного строительства

Изобретение относится к производству строительных материалов и может быть использовано при получении силикатных стеновых изделий - силикатного кирпича, плиток, блоков, стеновых панелей, подвергающихся автоклавной обработке при твердении
Изобретение относится к промышленности строительных материалов, а именно к изготовлению силикатных изделий, с использованием попутно добываемых вскрышных пород горнодобывающей промышленности
Изобретение относится к производству строительных материалов
Изобретение относится к составам для отделки бетонных и штукатурных поверхностей

Изобретение относится к производству строительных материалов и изделий, в частности стеновым силикатным изделиям автоклавного твердения
Изобретение относится к производству строительных материалов

Изобретение относится к производству безобжиговых вяжущих и может быть использовано при изготовлении строительных изделий гидравлического твердения
Изобретение относится к производству строительных материалов

Изобретение относится к производству строительных материалов и может быть использовано для получения силикатных стеновых изделий - силикатного кирпича, плиток, блоков, стеновых панелей и т.п., подвергающихся автоклавной обработке при твердении. Технический результат - снижение энергоемкости получения стеновых силикатных материалов, повышение их водостойкости. Гранулированный композиционный заполнитель для силикатных стеновых изделий размером 0,5-10,0 мм, состоящий из ядра и оболочки, где ядро получено гранулированием смеси совместно молотых до удельной поверхности 150-250 м2/кг кремнистой цеолитовой породы и гидроксида натрия, при их массовом соотношении 0,70-0,95:0,05-0,30 со связкой - водным раствором силиката натрия плотностью 1,2-1,3 г/см3 в количестве 0,1-7,0 мас.% от массы компонентов ядра, а оболочка сформирована на поверхности ядра его окатыванием сухой пылевидной смесью совместно молотых извести негашеной и натрия кремнефтористого в массовом соотношении 0,85-0,95:0,05-0,15, с последующим твердением до прочности не менее 2,1 МПа, и где при получении ядра одновременно с указанной связкой используют подогретый до 50°C алкилсульфонат в количестве 0,1-5,0 мас.% от массы компонентов ядра. Силикатное стеновое изделие, характеризующееся тем, что оно изготовлено с использованием указанного выше гранулированного композиционного заполнителя. Изобретение развито в зависимом пункте. 2 н. и 1 з.п. ф-лы, 1 пр., 1 табл.
Наверх