Оптико-электронный модуль большой дальности "фокус-д"

Оптико-электронный модуль содержит приборный блок, установленный на платформе. Платформа закреплена на опорно-поворотном устройстве, выполненном с возможностью вращения в азимутальной и угломестной плоскостях. В корпусе приборного блока расположены охлаждаемый тепловизор большой дальности действия и цветная видеокамера. Тепловизор имеет чувствительность 0,025К и узкое поле зрения 0,45x0,6 градуса. Опорно-поворотное устройство соединено с приборным блоком посредством кабеля и включает связанные с контроллером азимутальный и угломестный приводы. Технический результат - повышение дальности распознавания целей. 5 з.п. ф-лы, 3 табл., 2 ил.

 

Изобретение относится к радиоэлектронным устройствам и представляет собой пассивную комбинированную систему скрытого круглосуточного наблюдения за наземной и/или надводной обстановкой на дальности до 20 км в пределах прямой видимости, в том числе обнаружения и распознавания объектов наблюдения с удаленного рабочего места оператора.

Известен наземный транспортный комплекс для обнаружения и распознавания объектов, включающий два радиоэлектронных датчика, один из которых объединяет в себе тепловизор, видеокамеру и лазерный дальномер (RU 67529, кл. B60R 27/00, опубликован 24.07.2007).

Известный комплекс характеризуется сравнительно небольшой дальностью распознавания целей, а именно для цели типа «человек» для него характерна дальность 3,3-5 км.

Над датчиками известного комплекса закреплены крышки, предназначенные для закрывания люков в крыше кузова автомобиля в нерабочем положении комплекса и служащие для защиты датчиков от непогоды в рабочем (выдвинутом за пределы крыши кузова автомобиля) положении комплекса. Поскольку аппаратура комплекса преимущественно размещается внутри кузова автомобиля, к нему не предъявляются специальные требования, связанные с защитой аппаратуры от низких температур окружающей среды.

Технический результат изобретения состоит в повышении дальности распознавания целей как при наличии, так и при отсутствии оптической видимости, т.е. как днем, так и ночью, при этом дальность распознавания, например, человека составляет 7,5 км, т.е. по сравнению с аналогом она увеличена в 1,5-2 раза.

Кроме того, предложенный оптико-электронный модуль, в отличие от аналога, предназначен для установки на открытых площадках, на высотах, обеспечивающих дальность прямой видимости до объектов наблюдения. В связи с этим возникла необходимость его защиты от пагубных воздействий окружающей среды, в частности при температуре окружающей среды до минус 40°С.

Названный технический результат достигнут в изобретении с помощью следующей совокупности признаков.

Оптико-электронный модуль (ОЭМ) содержит приборный блок (ПБ), установленный на платформе, закрепленной на опорно-поворотном устройстве (ОПУ), выполненном с возможностью вращения в двух плоскостях: азимутальной и угломестной. В корпусе ПБ расположены охлаждаемый тепловизор для обнаружения и распознавания объектов ночью и цветная видеокамера для обнаружения и распознавания объектов днем. ОПУ соединено с ПБ посредством кабеля и включает связанные с контроллером азимутальный и угломестный приводы.

Большая дальность действия тепловизора достигается за счет применения охлаждаемого матричного детектора с высокой чувствительностью (0,025К) и узкопольной оптики (узкое поле зрения 0,45×0,6 градуса).

ОЭМ выполнен с обеспечением возможности вращения подвижной части опорно-поворотного устройства по азимуту - вкруговую, по углу места - в диапазоне ±35 градусов со скоростями до 60 градусов в секунду.

Охлаждаемый тепловизор и цветная видеокамера установлены на опорной площадке, под которой может быть расположен нагревательный элемент.

ОЭМ выполнен с возможностью работы в режиме непрерывного кругового обзора.

Корпус ПБ снабжен защитным козырьком.

Модуль выполнен с возможностью подключения по меньшей мере к одному процессорному блоку, имеющему на входе устройство преобразования аналогового видеосигнала в цифровой.

Сочетание в одной системе оптико-электронных средств (тепловизора и видеокамеры), работающих в различных диапазонах спектра, позволяет обнаруживать и распознавать объекты (цели) как днем, так и ночью.

Поле зрения - одна из основных характеристик ОЭМ. Оно характеризует угловые размеры того участка местности, в пределах которого одновременно можно наблюдать цели, не перестраивая изделие и не вращая его модуль. Чем меньше поле зрения, тем больше дальность обнаружения и распознавания целей (при других аналогичных характеристиках прибора). Увеличенная по сравнению с аналогом дальность обнаружения объектов достигнута применением в тепловизоре узкопольной оптики (поле зрения до 0,45×0,6 градуса) совместно с высокочувствительным матричным детектором.

ОЭМ позволяет осуществлять автономную работу при подключении его к процессорным блокам (компьютерам), имеющим на входе устройства преобразования аналогового видеосигнала в цифровой при помощи загруженного в него программного средства «АРМ Фаворит ОЭМ» версии 1.2.

Программное обеспечение ОЭМ позволяет осуществлять совокупность следующих режимов работы:

- управление в ручном режиме с помощью стандартных органов управления компьютера (клавиатура, манипулятор «Мышь», манипулятор «трек-бол», манипулятор «джойстик»);

- режим автоматизированного создания панорамных изображений с 10 контрольными точками и работы в данном режиме по контрольным точкам;

- режим программного сканирования местности по заранее задаваемым оператором траекториям;

- режим детектора движения с выдачей сигнала тревоги при появлении движущегося объекта либо во всем поле зрения модуля, либо в нескольких (до пяти) специальных зонах повышенного внимания;

- режим автоматического или ручного документирования обстановки в виде записей одиночных стоп-кадров или непрерывных видеороликов;

- режим подстройки тепловизора под температурные особенности наблюдаемой местности;

- режим автоматического сопровождения движущихся объектов по видеоизображению.

Конструктивно и электрически модуль может сопрягаться с другими средствами наблюдения, например радиолокационными станциями, и осуществлять совместную работу с ними путем приема по сети Ethernet команд целеуказания.

Нормальное функционирование ОЭМ возможно в пределах прямой видимости. Наиболее эффективное применение указанного модуля обеспечивается на открытой, преимущественно равнинной местности (на суше) или на морском побережье. Чем сложнее рельеф местности, тем меньше величина такого параметра, как коэффициент вскрытия обстановки, и менее эффективным становится применение модуля.

Предложенный модуль имеет следующие дальности обнаружения и распознавания объектов в нормальной прозрачности атмосферы:

- обнаружение цели типа «человек» днем и ночью - 5-7,5 км;

- обнаружение цели типа «автомобиль» днем и ночью - 6-9 км;

дальность распознавания больших целей (строения, крупные корабли, самолеты) - не менее 20 км.

Примечание. Под нормальной прозрачностью атмосферы понимается воздушная среда, состояние которой на уровне моря характеризуется давлением 1,033 кг/см2, плотностью 0,125 кг × с24, температурой 15°С и средним коэффициентом прозрачности, равным 0,85, определенным по методу Бугера.

ОПУ модуля позволяет изменять положение оптической оси в пределах:

- по азимуту - круговое (n × 360°) или секторное, задаваемое программным путем;

- по углу места ±35 градусов.

Точность сопряжения оптических осей приборов модуля составляет не хуже 0,1 градуса.

Аппаратура ОЭМ потребляет мощность не более 100 W при напряжении питания 24 V при положительных температурах окружающей среды и не более 350 W при отрицательных температурах (с учетом работы системы подогрева).

Масса модуля (без кабеля снижения) - не более 45 кг.

Время подготовки к работе при положительных температурах окружающей среды:

- для наблюдения днем с помощью видеокамеры - не более 1 мин;

- для наблюдения ночью с помощью тепловизора - не более 8 мин.

Время непрерывной работы модуля «Фокус-Д» не ограничено.

Изобретение поясняется чертежами, где на фиг.1 схематично изображен оптико-электронный модуль (общий вид); на фиг.2 - опорно-поворотное устройство модуля на фиг.1.

Изображенный на фиг.1 оптико-электронный модуль (ОЭМ) состоит из приборного блока (ПБ) 1, имеющего защитный козырек 2. На передней панели корпуса ПБ 1 расположен объектив 3 тепловизора и объектив 4 видеокамеры. Сами эти устройства размещены внутри корпуса упомянутого блока. ПБ 1 установлен на платформе 5 (фиг.2), жестко связанной с опорно-поворотным устройством (ОПУ) 6, при этом корпус 7 последнего имеет основание 8 для крепления ОПУ на внешних устройствах, снабженное выходным разъемом 9. На корпусе ОПУ выполнены разъемы 10 и 11 для подключения тепловизора и видеокамеры соответственно. ПБ 1 соединен с ОПУ 6 кабелем.

ПБ 1, размещенный на ОПУ 6, имеет возможность вращаться в двух плоскостях (азимутальной и угломестной) в пределах допустимых углов поворота. В результате вращения оптические оси приборов наблюдения перемещаются в пространстве и имеют возможность занимать положение, требуемое для обнаружения или распознавания целей. Поворот в азимутальной и угломестной плоскостях осуществляется путем автоматического управления приводом ОПУ 6 с рабочего места оператора.

Точность съема показаний датчиков угла ОПУ - 0,1°.

Работа ОЭМ в интервале температур от минус 32°С до минус 40°С обеспечивается системой подогрева.

Конструкция обеспечивает вращение подвижной части ОПУ по азимуту - вкруговую, по углу места - в диапазоне ±35 градусов со скоростями до 60 градусов в секунду. Рабочие значения секторов вращения и скорости могут устанавливаться программным путем.

Управление ОПУ и оптико-электронными приборами ОЭМ осуществляется по кабелю. ОЭМ может комплектоваться кабелями: длиной 5 метров (для работы в непосредственной близости от рабочего места) или длиной 50 метров (для работы при размещении на вышках). При необходимости длина кабеля может быть увеличена до 100 метров.

Описание и работа составных частей изделия

1. Опорно-поворотное устройство (ОПУ)

В корпусе ОПУ 6 размещена плата контроллера, соединенная с угломестным и азимутальным приводами.

Технические характеристики ОПУ приведены в таблице 1.

Таблица 1
Наименование характеристики Значение
Пределы сектора вращения по азимуту, град 360
Пределы сектора вращения по углу места, град ±35
Диапазон скоростей вращения по азимуту, °/с 0,03…65
Диапазон скоростей вращения по углу места, °/с 0,03…30
Собственная масса, кг, не более 14,0
Грузоподъемность, кг 36,0
Интерфейс управления Ethernet 10Mbit, TCP/IP
Интерфейсы управления приборами, 1xRS232; 1xRS232/485;
размещаемыми на ОПУ 3xRS232/422
Точность отсчета азимутального угла, град 0,1
Напряжение питания, V 24,0
(19…28)
Диапазон рабочих температур (без включения от минус 32
системы подогрева), °С до плюс 55
Диапазон предельных температур, °С от минус 40
до плюс 70
Степень защиты корпуса IP 65
Стойкость к воздействию влаги MIL-STD 810 F
тест 507.4
(+20°С/+60°С, 95%)
Стойкость к воздействию вибрации MIL-STD 810 С
тест 514.5-VIII
ускорение 1.5 g
частота 5-80 Hz
Ударопрочность MIL-STD 810 F
тест 516.5-I
ускорение 20 g
длительность 11 ms
Электромагнитная совместимость MIL-STD-461E
(тесты СЕ102); CS101
(30Hz÷50kHz); CS114
(10kHz÷30MHz); RE102
(2MHz÷18GHz); RS103
(30MHz÷4,2GHz)
Наличие видеомультиплексора (входы/выходы) 2 входа × 2 выхода

2. Приборный блок (ПБ)

ПБ 1 представляет собой герметичный корпус с защитным козырьком 2. В корпусе блока 1 размещены: дневная видеокамера на основе ПЗС-матрицы, охлаждаемый тепловизор 3-го поколения, нагревательный элемент системы подогрева и кабельная сеть.

Приборы наблюдения - тепловизор и видеокамера расположены и закреплены на опорной площадке (не показана).

Опорная площадка с приборами (после отключения кабелей, доступ к которым обеспечивается при снятой задней панели) выдвигается вперед вместе с передней панелью блока 1, обеспечивая легкий доступ к этим приборам.

Кабельная сеть обеспечивает электрическое соединение приборов с проходным разъемом, расположенным на задней панели корпуса приборного блока.

Все приборы установлены разъемами к задней панели приборного блока.

Нагревательный элемент системы подогрева мощностью 120 W (не показан) закреплен на нижней поверхности опорной площадки.

Нижняя и верхняя панели ПБ - съемные и крепятся к его корпусу с помощью резьбового соединения (винтами).

3. Видеокамера

Видеокамера служит для наблюдения объектов днем. Видеокамера формирует цветной аналоговый видеосигнал стандарта PAL и выдает его через видеомультиплексор на выходной разъем ОПУ, который является выходом ОЭМ.

Технические характеристики видеокамеры приведены в таблице 2.

Таблица 2
Наименование характеристики Значение
Матрица 1/4" Super HAD
Стандарт видеосигнала PAL
Количество пикселей 800000
Минимальная рабочая освещенность, 1х 2,0
Соотношение сигнал/шум, dB 50
Амплитуда выходного сигнала на нагрузку 75 Ω, V 1,0
Фокусное расстояние, mm 3,5…91
Максимальный угол зрения, ° 42
Минимальный угол зрения, ° 1,6
Интерфейс управления RS 232
Напряжение питания, V 12 постоянного тока
Потребляемый ток, мА 250
Диапазон рабочих температур (без включения системы подогрева), °С минус 32…+50
Диапазон предельных температур, °С минус 40…+60
Степень защиты IP 65
Влагостойкость, % 98 без конденсата

4. Тепловизор

Тепловизионный прибор (тепловизор) служит для обнаружения и распознавания объектов в отсутствии оптической видимости ночью, а также в сложных метеоусловиях. В ОЭМ применен один из самых современных охлаждаемых тепловизионных приборов 3-го поколения на основе матричного МСТ-детектора, обладающий высокой температурной чувствительностью и узким полем зрения, позволяющим обеспечить дальности распознавания цели типа «человек» более 5 км. Технические характеристики тепловизора приведены в таблице 3.

Таблица 3
Наименование характеристики Значение
Размер матрицы, пиксели: 640×512
Поля зрения, град 0,95×1,2
3,8×4,7
12,5×15,3
Степень защиты корпуса IP 66
Диапазон рабочих температур без включения системы подогрева, °С минус 32…плюс 55
Ударопрочность 30 g, 11 ms
Виброустойчивость MIL STD 1810F
метод 514.5
Наличие и кратность цифрового ZOOM Есть, кратность=2
Диапазон, µm 3,7…4,8
Стандарт выходного видеосигнала PAL, NTSC
Тип детектора МСТ
Температурная чувствительность, К 0,025
Интерфейс обмена RS 232
Система охлаждения Стирлинг
Габаритные размеры, мм 205 х 206 х 458
Масса, кг 12,5

Тепловизор оснащен трехфокальной оптической системой, формирующей три поля зрения, которые при включении цифрового увеличения достигают значений в широком поле 7,7×6,3, в среднем 2,4×1,9 и узком 0,6×0,45 градуса.

Дальности обнаружения и распознавания цели типа «человек» ночью, указанные выше, получены при минимальном значении поля зрения, коэффициенте прозрачности атмосферы - 0,82, температурном контрасте цели относительно фона - 2К и размере цели 1,8×0,5 м.

Модуль «Фокус-Д» имеет в своем составе комплект программного обеспечения, которое позволяет осуществлять, в частности, цифровую стабилизацию видео- или тепловизионных изображений. Этот режим позволяет удерживать стабильное изображение на экране монитора при медленных угловых колебаниях опоры, на которой может быть размещен модуль. Также программное обеспечение ОЭМ позволяет управлять положением приборного блока и соответственно положением оптических осей тепловизора и видеокамеры, позволяя наводить их поле зрения в необходимую точку пространства. Кроме того, ОЭМ позволяет при работе с видеокамерой или тепловизором создавать и отображать на специальном поле в верхней части экрана монитора панорамные изображения, которые затем могут использоваться как вспомогательная информация для быстрого наведения ОЭМ на отдельные контрольные точки панорамы.

После развертывания оптико-электронный модуль «Фокус-Д» по умолчанию устанавливается в режим работы с видеокамерой. Для перехода в режим работы с тепловизором необходимо щелкнуть по соответствующей электронной клавише.

Для обеспечения максимальной эффективности использования ОЭМ он устанавливается на открытых площадках на высотах, обеспечивающих наибольшую дальность прямой видимости до объектов.

Для обнаружения целей высотой не менее 1 метра дальности прямой видимости составляют:

- при высоте установки модуля 5 метров - не менее 13 км;

- при высоте установки модуля 10 метров - не менее 17 км;

- при высоте установки модуля 15 метров - не менее 20 км.

Установка модуля на высотах больше указанных к увеличению тактических характеристик не приводит.

ОЭМ закрепляют с помощью болтового соединения ОПУ к прочному металлическому основанию опоры, выбранной пользователем для установки ОЭМ.

Крепление модуля осуществляется с помощью четырех болтов диаметром М8, расположенных под углом 90° на диаметре 110 мм.

После закрепления модуля к нижнему выходному разъему 9 (фиг.2) ОПУ подключают внешний кабель.

Ответная часть кабеля должна быть подключена в соответствии с маркировкой, нанесенной на кабеле:

- к устройству видеозахвата;

- к входу Ethernet компьютера (процессорного блока);

- к источнику электропитания постоянного тока напряжением 24V и мощностью не менее 300 W.

1. Оптико-электронный модуль, содержащий приборный блок, установленный на платформе, закрепленной на опорно-поворотном устройстве, выполненном с возможностью вращения в двух плоскостях: азимутальной и угломестной, при этом в корпусе приборного блока расположены охлаждаемый тепловизор большой дальности действия с чувствительностью 0,025К и узким полем зрения 0,45×0,6 градуса и цветная видеокамера, а опорно-поворотное устройство соединено с приборным блоком посредством кабеля и включает связанные с контроллером азимутальный и угломестный приводы.

2. Модуль по п.1, отличающийся тем, что он выполнен с обеспечением возможности вращения подвижной части опорно-поворотного устройства по азимуту - вкруговую, по углу места - в диапазоне ±35 градусов со скоростями до 60 градусов в секунду.

3. Модуль по п.1, отличающийся тем, что охлаждаемый тепловизор и цветная видеокамера установлены на опорной площадке, под которой расположен нагревательный элемент.

4. Модуль по п.1, отличающийся тем, что выполнен с возможностью работы в режиме непрерывного кругового обзора.

5. Модуль по п.1, отличающийся тем, что корпус приборного блока снабжен защитным козырьком.

6. Модуль по п.1, отличающийся тем, что он выполнен с возможностью подключения по меньшей мере к одному процессорному блоку, имеющему на входе устройство преобразования аналогового видеосигнала в цифровой.



 

Похожие патенты:

Изобретение относится к обнаружению объектов. .

Изобретение относится к устройствам селекции объектов на неоднородном удаленном фоне. .

Изобретение относится к автоматическому регулированию, предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением.

Изобретение относится к области систем слежения за подвижными объектами, в том числе с качающегося основания, а также может быть использовано для управления воздушным движением.

Изобретение относится к оптико-электронным устройствам, предназначенным для обнаружения источников оптического излучения и диагностирования оптических характеристик этих источников.

Изобретение относится к области систем наведения и автоматического сопровождения объектов в пространстве, преимущественно с подвижного основания. .

Изобретение относится к области неразрушающего контроля нефтегазопроводов и может быть использовано для целей бесконтактного оптического определения пройденного расстояния на борту внутритрубного снаряда-дефектоскопа.

Изобретение относится к оптико-механическим системам обзора и может быть использовано в технике активной и пассивной локации пространства. .

Изобретение относится к измерительной технике в оптоэлектронике, а именно к измерению энергетических параметров многоканальных сканирующих теплопеленгаторов (ТП).

Изобретение относится к оптико-механическим системам обзора и может быть использовано в технике активной и пассивной локации пространства

Изобретение относится к фотоследящим устройствам и может быть использовано в системах обнаружения, слежения и управления за воздушным движением. Устройство включает приемники сигналов, которые установлены на правом и левом карданных подвесах и содержат защищенные тубусами фотоэлементы, установленные в защитном корпусе с увиолевым стеклом. Датчики токов, установленные в электрической цепи фотоэлементов, связаны многоканальными кабелями с программно-логическими комплексами, которые кабелями связаны с системным блоком компьютера и телевизионной системой монитора компьютера. Правый и левый карданные подвесы приемников сигналов соединены интегрированными шаговыми сервоприводами с системным блоком компьютера. Технический результат заключается в уменьшении времени поиска воздушного объекта за счет замены обработки информации спектра радиоволн видимого диапазона на спектр радиоволн ультрафиолетового диапазона, независимость определения объекта от помех. 4 ил.

Изобретение может быть использовано в ретрорефлекторных системах (PC) космических аппаратов. Кольцевая ретрорефлекторная система состоит из уголковых отражателей с пирамидальной вершиной и основанием, на боковых гранях которых имеется отражающее покрытие. В каждом уголковом отражателе один из трех двугранных углов при вершине выполнен с заданным отступлением от 90°. Вершины уголковых отражателей расположены равномерно по окружности так, что основания уголковых отражателей расположены в одной плоскости. Каждый уголковый отражатель развернут таким образом, чтобы проекция ребра двугранного угла уголкового отражателя, выполненного с заданным отступлением от 90°, на плоскость составляла с касательной к окружности одинаковые углы для всех уголковых отражателей. Проекции диаметрально противоположных ребер двугранных углов уголковых отражателей, выполненных с заданным отступлением от 90°, параллельны. Технический результат - повышение точности измерения расстояния до центра РС и возможность ее использования в одноосно ориентированных спутниках, например, ГЛОНАСС. 3 ил.

Изобретение относится к области оптико-электронных устройств слежения, преимущественно к наземному комплексу для обнаружения и распознавания объектов. Наземный транспортный комплекс для обнаружения и распознавания объектов включает наземное транспортное средство, систему электропитания и оптико-электронную систему. Оптико-электронная система содержит видеокамеру и тепловизор и установлена на опорно-поворотном устройстве, закрепленном на подъемно-мачтовом приспособлении и выполненном с возможностью вращения на 360 градусов в азимутальной плоскости, а также с возможностью перемещения по углу места. Опорно-поворотное устройство выполнено с возможностью вращения в азимутальной плоскости со скоростью до 120 градусов в секунду и перемещения по углу места на ±60 градусов со скоростью до 100 градусов в секунду. Оптико-электронная система выполнена с возможностью одновременного вывода изображения с камеры и тепловизора на два монитора. Программное обеспечение комплекса выполнено с возможностью его функционирования под управлением операционной системы Ubuntu Linux. Достигается повышение скорости обнаружения и распознавания объектов. 5 з.п. ф-лы, 7 ил.
Способ относится к оптическим стереоскопическим способам определения местонахождения объекта в окружающем пространстве. При реализации способа принимают и регистрируют опорное и сравниваемое изображения двумя идентичными оптическими системами. Формируют разностные изображения путём вычитания сравниваемого изображение из опорного и опорного из сравниваемого. Обнуляют отрицательные значения в разностных изображениях. И определяют расстояние до объекта на основании сдвига между ненулевыми фрагментами разностных изображений. Причём расстояние между точками регистрации каждой пары опорного и сравниваемого изображений последовательно уменьшают при приближении объектов к оптической системе. Технический результат заключается в согласовании базисного расстояния регистрации кадров стереопары в процессе перемещения оптических систем в пространстве. 3 з.п. ф-лы, 8 ил.

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий микроконтроллер, оптический солнечный датчик, фотоприемники которого выполнены в виде каскадных фотопреобразователей, датчик оборотов первого электродвигателя, датчик оборотов второго электродвигателя. Система обеспечивает сопровождение солнечного диска с необходимой точностью независимо от погодных условий и сводит к минимуму собственное потребление энергии за счет исключения срабатывания оптического солнечного датчика при его засветке от светлых пятен в облаках. 2 ил.
Способ автоматического обнаружения целей может быть использован при модернизации и разработке образцов военной техники сухопутных войск. Достигаемый результат - обеспечение реализации одновременного выполнения функций автоматического обнаружения и государственного опознавания целей, что в итоге сокращает время решения огневой задачи, исключение ситуаций случайного обстрела и поражения своих сил и средств. Сущность изобретения состоит в том, что в способе автоматического обнаружения целей с использованием лазерного локатора, заключающемся в наведении оператором с помощью своего оптико-электронного прицела лазерного локатора на предполагаемую цель, формировании им зондирующего импульса, приеме и обработке приемным устройством отраженного лазерного излучения от оптико-электронного прибора цели и выдаче сигнала о наличии или отсутствии цели, при этом зондирующий импульс содержит кодированную информацию запросчика системы государственного опознавания цели, приемное устройство системы государственного опознавания, установленное на цели, принадлежащей к своим войскам, принимает и обрабатывает полученный кодированный зондирующий импульс и передает ответный кодированный радиосигнал, подтверждающий принадлежность цели к своим войскам. Запросчик системы государственного опознавания принимает кодированный радиосигнал и информирует оператора о принадлежности цели к своим войскам, а при отсутствии от цели подтверждающего кодированного радиосигнала информирует оператора о принадлежности цели к противнику.

Способ противодействия управляемым боеприпасам (УБП) базируется на поэтапном воздействии оптического сигнала на оптико-электронный (ОЭК) УБП в зависимости от координат его местоположения, их разброса и временных промежутков энергетической доступности фоточувствительной площадки его приемника. Предварительно осуществляют по сопровождающему оптическому излучению составных элементов (корпуса ракеты, двигателя) обнаружение и пеленгацию УБП. Далее производят локацию ОЭК УБП оптическим сигналом в интересах формирования базы данных о структуре и характеристиках функционирования ОЭК УБП и его пространственном местоположении и ориентации относительно оптико-электронного средства поражения (ОЭСП). Согласование полей зрения ОЭК УБП и приемопередающего канала ОЭСП в зависимости от их взаимного местоположения и скорости сближения с учетом ошибок пеленгации и целеуказания осуществляют управлением углом расходимости лазерного излучения. Также формируют относительно ОЭСП три зоны воздействия оптического сигнала на фотоприемник ОЭК УБП: дальняя, средняя и ближняя. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности радиоэлектронного поражения оптико-электронных средств, входящих в состав высокоточного оружия. 3 ил.

Способ определения местоположения огневых точек противника и устройство, его реализующее, основано на том, что выполняют на карте привязку оператора к местности, проводят калибровку размеров изображения на мониторе компьютера с размерами реальных объектов окружающей среды. Далее устанавливают видеокамеру и вертикально два размещенных друг над другом лазерных излучателя, ориентированных по вертикальной оси. Проводят сканирование лазерными излучателями в намеченном секторе с образованием лазерных плоскостей, фиксируют точки пересечения вылетевшего снаряда с лазерными плоскостями, соединяют точки линией, которую экстраполируют до пересечения с поверхностью земли, определяют ее длину, высоту точки пересечения вылетевшего снаряда и вычисляют расстояние до огневой точки. Технический результат - упрощение конструкции устройства, реализующего способ, облегчение его эксплуатации. 2 н.п. ф-лы, 2 ил.

Автогидирующая оптико-механическая система со встречной засветкой оптоволокна содержит оптическое волокно, соединяющее входную и оптическую системы спектрографа и детектор смещения изображения центра звезды с входного торца оптического волокна. При этом вход оптического волокна вклеен по центру одной из граней оптической призмы. Причем перед оптической призмой по ходу луча расположены два компенсирующих оптических элемента, выполненных в виде плоскопараллельных пластин, каждый из которых имеет возможность вращения вокруг своей оси. Оси оптических элементов расположены в ортогональных плоскостях, а их приводы выполнены в виде электродвигателей, управляемых с помощью персонального компьютера посредством специального алгоритма. Технический результат заключается в упрощении конструкции и технологии изготовления автогидирующей оптико-механической системы оптоволоконного спектрографа, основанной на встречной засветке оптоволокна. 1 ил.
Наверх