Радиационная горелка


 


Владельцы патента RU 2427758:

Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН (ИХФ РАН) (RU)

Изобретение относится к области теплоэнергетики и может найти применение в качестве нагревательного устройства в бытовых газовых плитах. Радиационная горелка содержит корпус с кольцевой крышкой, перфорированную излучающую насадку, выполненную в виде полости, образованной двумя излучающими поверхностями, размещенными в корпусе, и систему подвода топливовоздушной смеси. Боковая часть корпуса горелки выполнена в виде двух тонкостенных коаксиальных цилиндров, кольцевой зазор между которыми герметичен и вакуумирован, а кольцевая крышка соединена с корпусом через термоизолирующую прокладку. Горелка высоко эффективна и безопасна в обращении. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике, а именно к радиационным горелкам, и может применяться для бытовых и промышленных нужд в различных теплоэнергетических установках и преимущественно в бытовых и коммунально-бытовых газовых плитах, обогревателях, сушилках, печах и др.

Известна промышленная горелка для сжигания перемешанных газовых смесей с плоской насадкой, выполненной в виде металлической сетки или системы сеток (А.К.Родин. Газовое лучистое отопление. Л.: Недра, 1987). Недостатком такой горелки является недостаточное снижение выбросов СО в атмосферу и нагрев корпуса до высокой температуры.

Известна радиационная горелка, содержащая корпус, систему подвода топливовоздушной смеси и керамическую перфорированную излучающую насадку, выполненную в виде полости, установленную в корпусе и имеющую окно для вывода излучения (RU 2272219, F23D 14/12, 20.03.2006). Данная горелка обеспечивает существенное снижение выбросов СО в атмосферу, но в ней происходит нагрев корпуса до высоких температур, что приводит к увеличению сторонних теплопотерь и к снижению эффективности горелки.

Наиболее близким решением по технической сущности и достигаемому результату является радиационная горелка, содержащая корпус, перфорированную излучающую насадку, выполненную в виде полости, размещенной в корпусе, и систему подвода топливовоздушной смеси. Перфорированная излучающая насадка имеет две излучающие поверхности, размещенные с зазором относительно друг друга, причем внешняя излучающая поверхность образована металлической сеткой, а внутренняя излучающая поверхность образована перфорированной металлической лентой или крупноячеистой металлической сеткой, размеры ячеек которой превышают размеры ячеек сетки, образующей внешнюю излучающую поверхность (RU 2336462, F23D 14/12, 20.10.2008 - прототип).

Недостатком горелки, выбранной за прототип, является недостаточно высокая эффективность вследствие высоких сторонних тепловых потерь через боковую поверхность корпуса и опасность получения ожога при ее использовании в бытовых газовых плитах.

Задачей изобретения является разработка такой конструкции радиационной горелки, которая позволит существенно увеличить эффективность горелочного устройства и сделать горелку безопасной в обращении.

Решение поставленной задачи достигается предлагаемой радиационной горелкой, содержащей корпус с кольцевой крышкой, перфорированную излучающую насадку, выполненную в виде полости, образованной двумя излучающими поверхностями, размещенными в корпусе, и систему подвода топливовоздушной смеси, в которой боковая часть корпуса горелки выполнена в виде двух тонкостенных коаксиальных цилиндров, кольцевой зазор между которыми герметичен и вакуумирован, а кольцевая крышка соединена с корпусом через термоизолирующую прокладку.

Кольцевой зазор между двумя тонкостенными коаксиальными цилиндрами, образующими боковую часть корпуса горелки, может составлять 3-6 мм.

Технический результат от использования предлагаемого изобретения состоит в том, что вследствие конструкции боковой части корпуса горелки в виде двух тонкостенных коаксиальных цилиндров, кольцевой зазор между которыми герметичен и вакуумирован, существенно сокращаются сторонние теплопотери, что позволяет повысить эффективность горелки, так как процесс горения становится более стабильным и экономичным (увеличивается КПД горелки) и более экологичным - уменьшается количество продуктов неполного сгорания топлива. Благодаря указанной конструкции боковой части корпуса горелки и термоизоляции горячей крышки от корпуса, уменьшается температура внешней стороны корпуса, следовательно, увеличивается безопасность в обращении с горелкой.

Выбранный размер кольцевого зазора между двумя тонкостенными коаксиальными цилиндрами, образующими боковую часть корпуса горелки, выбирался из следующих соображений. При зазоре менее 3 мм сторонние теплопотери через корпус горелки резко возрастают. Увеличение зазора свыше 6 мм не дает заметного прироста эффективности горелки, но приводит к ухудшению механических характеристик ее корпуса.

Сущность изобретения поясняется чертежом. На нем представлена предлагаемая радиационная горелка в продольном разрезе.

Горелка содержит корпус 1 с системой подвода топливовоздушной смеси 2 и кольцевой крышкой 3, на которой закреплена перфорированная излучающая насадка в виде цилиндрической металлической сетки 4, образующей внешнюю излучающую поверхность горелки, и цилиндрической перфорированной металлической ленты 5, образующей внутреннюю излучающую поверхность горелки. Кольцевая крышка горелки 3 соединяется с корпусом 1 через термоизолирующую прокладку 6.

Горелка работает следующим образом.

Топливовоздушная смесь подается по каналу 2 в корпусе 1 горелки и из него поступает в зазор между сеткой 4 и перфорированной лентой 5, где и происходит ее сгорание. При этом, в зависимости от расхода топливовоздушной смеси, температура внутренней излучающей поверхности устанавливается в пределах от 800°С до 1100°С, а внешней - до 500-600°С. Выделяемое при этом ИК-излучение от внутреннего излучателя 5 выводится из горелки и поступает на поверхность нагреваемого объекта. Однако из-за высокой температуры внешнего излучателя возникает большой радиационный поток на боковую стенку корпуса горелки. Дополнительный поток тепла к корпусу поступает от разогретой кольцевой крышки 3.

Если боковая стенка корпуса 1 выполнена в виде традиционной однослойной конструкции, то из-за высоких сторонних теплопотерь через стенку корпуса эффективность горелки снижается. При этом нагрев боковой поверхности корпуса горелки достигает в средней части 100-150°С, а в верхней части - 200-250°С. Такая горелка становится опасной в обращении с ней.

В предлагаемой горелке благодаря конструкции боковой части корпуса горелки в виде двух тонкостенных коаксиальных цилиндров, кольцевой зазор между которыми герметичен и вакуумирован, и термоизоляции горячей крышки от корпуса с помощью термоизолирующей прокладки сторонние теплопотери практически исключаются, что приводит к значительному повышению эффективности горелки. Предлагаемые особенности конструкции горелки позволяют существенно снизить температуру внешней стороны корпуса, следовательно, увеличивается безопасность в обращении с горелкой.

Были проведены сравнительные калориметрические эксперименты по оценке эффективности горелочного устройства предлагаемой конструкции. Эксперименты показали, что изготовление корпуса горелки в виде двух тонкостенных коаксиальных цилиндров, кольцевой зазор между которыми герметичен и вакуумирован, и соединение кольцевой крышки горелки с корпусом через термоизолирующую прокладку приводят к увеличению КПД горелки на 5-10% и снижению температуры боковой поверхности корпуса горелки до 30-60°С.

Таким образом, предлагаемая горелка отличается более высокой эффективностью и безопасна в обращении.

1. Радиационная горелка, содержащая корпус с кольцевой крышкой, перфорированную излучающую насадку, выполненную в виде полости, образованной двумя излучающими поверхностями, размещенными в корпусе, и систему подвода топливовоздушной смеси, отличающаяся тем, что боковая часть корпуса горелки выполнена в виде двух тонкостенных коаксиальных цилиндров, кольцевой зазор между которыми герметичен и вакуумирован, а кольцевая крышка соединена с корпусом через термоизолирующую прокладку.

2. Радиационная горелка по п.1, отличающаяся тем, что кольцевой зазор между двумя тонкостенными коаксиальными цилиндрами, образующими боковую часть корпуса горелки, составляет 3-6 мм.



 

Похожие патенты:

Изобретение относится к устройству радиационного нагрева промышленной печи с использованием излучаемого тепла. .

Изобретение относится к системам отопления бытовых и производственных помещений, термической обработки материалов в авиационной, машиностроительной, химической и других отраслях.

Изобретение относится к системе нагревания и способу пуска устройства непосредственного нагревания. .

Изобретение относится к устройствам для получения тепла, радиационного (электромагнитного) излучения и электроэнергии за счет сжигания газо- и парообразного топлива, например к радиационным горелкам, фотоэлектрическим, термоэлектрическим, термоэмиссионным генераторам, котлам и печам производственного и бытового назначения.

Изобретение относится к области химии и может быть использовано в процессе окислительной конверсии. .

Изобретение относится к теплоэнергетике, а именно к радиационным горелкам, и может применяться для бытовых и промышленных нужд в различных теплоэнергетических установках, в камерах сгорания газотурбинных установок, обогревателях, сушилках, печах.

Изобретение относится к нагревательным устройствам с температурными излучателями, нагреваемыми сжигаемой топливно-воздушной смесью в беспламенным режиме, преимущественно для нагрева дорожного покрытия в процессе его ремонта.

Изобретение относится к нагревательным устройствам, сжигающим природный газ, и может быть использовано в промышленности и других отраслях. .

Изобретение относится к области теплоэнергетики и может найти применение в качестве нагревательного устройства в бытовых газовых плитах. .

Изобретение относится к области энергетики, в частности к плоскопламенной сводовой горелке

Изобретение относится к пламенному нагревателю

Изобретение относится к пламенному нагревателю

Изобретение относится к нагревателю беспламенного горения

Изобретение относится к беспламенному бензиновому отопителю

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электростанциях, в котельных и печном хозяйстве предприятий при сжигании распыленного водоугольного топлива или пылевоздушной смеси

Рекуператор тепла для радиационной трубчатой горелки содержит трубу горелки и выпускную трубу. Горелка установлена на входе трубы горелки. Рекуператор установлен на выходе выпускной трубы и содержит теплообменник. Теплообменник расположен внутри соединительной трубы, выполненной с возможностью соединения с выпускной трубой. Теплообменник содержит направляющий участок для направления воздуха, который подлежит предварительному нагреванию, к наконечнику, расположенному на конце рекуператора со стороны впуска дымовых газов, и обратный участок, открывающийся в линию, подающую воздух в горелку. Наконечник определяет путь для изменения на противоположное направление потока воздуха для горения и для направления его в обратный участок. Часть дымовых газов увлекается воздухом для горения и смешивается с ним. Теплообменник занимает только часть поперечного сечения соединительной трубы, а другая часть остается свободной для прохождения дымовых газов к выходу. Направляющий участок теплообменника содержит множество теплообменных трубок, параллельных оси соединительной трубы. Обе текучие среды имеют параллельные потоки, проходящие в противоположных направлениях. Теплообменные трубки открыты внутрь наконечника. Воздушный контур выполнен в виде «петли». Обратный участок смещен в радиальном направлении относительно трубок направляющего участка. Поперечные сечения теплообменных трубок и обратного участка расположены снаружи относительно друг друга. Изобретение позволяет снизить механические напряжения, увеличить площадь теплообмена и уменьшить массу рекуператора. 15 з.п. ф-лы, 9 ил.

Изобретение относится к области теплоэнергетики и может быть использовано при разработке инфракрасных нагревателей направленного действия с высокими технико-экономическими свойствами для промышленных и бытовых нужд. Источник направленного инфракрасного излучения включает излучатель, расположенный в фокусе параболического рефлектора. Излучатель выполнен в виде полого шара из пористого интерметаллида - алюминий/никель или пористой керамики на основе карбида кремния. Внутренняя полость шара является смесителем газообразных компонентов топливной смеси. Излучатель ограничен двухслойной сферической оболочкой с разной пористостью слоев. Компоненты топлива в смеситель подаются через патрубок в виде коаксиальных трубок, на концах которых расположены тангенциальные каналы с противоположным направлением закрутки. Материалы, пористость, характерный размер пор и толщина слоев оболочки выбраны из условия обеспечения устойчивого беспламенного горения топливной смеси во внешней оболочке при отсутствии проскока пламени в центральную полость излучателя. Заявленное техническое решение позволяет осуществлять равномерный нагрев удаленных объектов направленным инфракрасным излучением с высоким КПД сжигания газообразного топлива. 1 з.п. ф-лы, 3 ил.

Изобретение относится к устройству для термической обработки рулонных полос (6) с, по меньшей мере, одним излучающим трубным узлом (1), содержащим три трубы, лежащие в общей, параллельной рулонной полосе (6) осевой плоскости, а именно центральную трубу (2), подключаемую к горелке, и две внешние трубы (3), сообщенные на обоих концах с центральной трубой (2) через трубные колена (4), и с опорной шейкой (9), соединенной с обоими трубными коленами (4) между центральной трубой (2) с одной стороны и обоими внешними трубами (3) с другой стороны и расположенной на противоположенной относительно горелки стороне излучающего трубного узла. Для учета возникающих тепловых расширений в области трубных колен (4) предложено, чтобы опорная шейка (9) была расположена на перемычке (10), перекрывающей пазуху (11) между двумя трубными коленами (4) и содержащей два расположенных по обеим сторонам оси центральной трубы (2) участка (12), наклоненных под острым углом к оси центральной трубы (2). 1 з.п. ф-лы, 2 ил.
Наверх