Способ получения водорода


 


Владельцы патента RU 2428371:

Государственное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) (RU)

Изобретение относится к области химии. В реактор периодически вводят алюминиевую проволоку, которую пропускают между электродами в среде перегретого насыщенного водяного пара, или в нижнюю часть реактора подают воду, и алюминиевая проволока реагирует в нижней части реактора с водой, а в верхней - с насыщенным водяным паром. На электроды периодически подают электрический импульс с плотностью введенной в проволоку энергии 10-20 кДж/г и периодически производят взрыв алюминиевой проволоки на жидкие наночастицы алюминия, которые вступают в реакцию с насыщенным водяным паром или в нижней части реактора - с водой, а в верхней - с насыщенным водяным паром, образуя окислы алюминия и газообразный водород. Алюминиевую проволоку перед взрывом нагревают до температуры плавления. Изобретение направлено на повышение производительности, снижение энергозатрат и повышение чистоты водорода. 1 ил., 1 табл.

 

Изобретение относится к химической промышленности, в частности к способам получения газообразного водорода.

Известен способ получения водорода, включающий взаимодействие водяного пара с элементарным железом и/или с его низшим окислом в кипящем слое при 500-650°С, давлении 0,1-0,4 МПа, регенерацию образующихся окислов железа, контактированием их с твердым углеродосодержащим материалом при 800-1100°С с получением газов регенерации и восстановленных окислов железа и возврат последних на стадию взаимодействия, газы регенерации возвращают на стадию регенерации, а окислы железа на стадии регенерации используют с размером частиц 50·10-6-140·10-6 м [патент РФ №1125186, МПК С01В 3/10, опубл. 23.11.1984 г., БИ №43 «Способ получения водорода», авторы Лебедев В.В. и др.].

Недостатком способа является сложность процесса, низкая производительность и большие энергозатраты.

Известен способ получения водорода путем конверсии в реакторе водяного пара в среде раскаленного железа до окислов железа и газообразного водорода, в котором используют реактор, состоящий из рубашки охлаждения и высоковольтного разрядника с двумя электродами, один из которых изготовлен из технического железа, в баке кипятят дистиллированную воду, образуя насыщенный пар, его подают в рубашку охлаждения реактора, образуя перегретый пар, на высоковольтный разрядник подают переменный ток напряжением 3,6 кВ, одновременно через форсунку в разрядный промежуток вводят перегретый пар, а образовавшиеся окислы железа при помощи вибрации сбрасывают в сборную емкость; влажный водород выпускают из реактора в конденсатор, охлаждаемый водой из системы водоснабжения, конденсат сбрасывают, после этого предварительно осушенный водород подвергают окончательной осушке в регенерируемых силикагелевых патронах, затем водород через микропористый фильтр раздают потребителям в интерметаллидных компрематорах, которые при десорбции водорода обеспечивают его чистоту до 99,99 об.%. [патент РФ №2191742, МПК С01В 3/00, С01В 3/10, опубл. 27.10.2002 г., БИ №30 «Способ получения водорода», авторы Адамович Б.А. и др.]

Недостатком способа является низкая производительность и большие энергозатраты.

Данное техническое решение выбрано в качестве прототипа.

Техническим результатом является повышение производительности, снижение энергозатрат и повышение чистоты водорода.

Технический результат достигается тем, что в способе получения водорода, заключающемся в конверсии перегретого насыщенного водяного пара в реакторе с электродами, в реактор периодически вводят алюминиевую проволоку, которую пропускают между электродами в среде перегретого насыщенного водяного пара, или в нижнюю часть реактора подают воду, и алюминиевая проволока реагирует в нижней части реактора с водой, а в верхней - с насыщенным водяным паром, на электроды периодически подают электрический импульс с плотностью введенной в проволоку энергии 10-20 кДж/г, периодически производят взрыв алюминиевой проволоки на жидкие наночастицы алюминия, которые вступают в реакцию с насыщенным водяным паром или в нижней части реактора - с водой, а в верхней - с насыщенным водяным паром, образуя окислы алюминия и газообразный водород. Алюминиевую проволоку перед взрывом нагревают до температуры плавления.

Реакцию взаимодействия алюминия с насыщенным водяным паром производят на поверхности алюминия при температуре 600-700°С. Взрыв проволоки обеспечивает плавление и моментальное диспергирование сразу всего участка проволоки, поданного в реактор, вследствие чего увеличивается реагируемая поверхность и происходит равномерный нагрев диспергируемого материала до 700°С. Высокотемпературные наночастицы алюминиевой проволоки размером 70-120 нм позволяют быстро провести реакцию окисления алюминия с выделением водорода по всему объему реактора, таким образом, скорость получения водорода ограничивается только скоростью подачи проволоки в реактор.

Нагрев взрываемого участка проволоки до температуры плавления обеспечивает снижение энергозатрат на взрыв проволоки.

Подача воды в реактор и взрыв проволоки в верхней части реактора в среде перегретого насыщенного водяного пара позволит окислять взорванную алюминиевую проволоку одновременно в нижней части реактора с водой, а в верхней - с паром. Причем в этом случае в составе продуктов реакции будет преобладать Аl(ОН)3, так как его образование происходит при более низких температурах, а следовательно, производительность водорода будет выше.

На чертеже представлена схема получения водорода.

Реактор 1 состоит из рубашки охлаждения 2, двух электродов 3 и 4, взрываемого участка проволоки 5, магистрали 6 выхода водорода, магистрали 7 выхода продуктов реакции, высоковольтного источника питания 8, емкостного накопителя энергии 9, коммутатора 10.

Насыщенный водяной пар подают в рубашку охлаждения 2 реактора 1, где его перегревают до температуры 350-400°С и подают в реактор.

От высоковольтного источника питания 8 заряжают емкостный накопитель энергии 9. Взрываемый участок проволоки 5 подают в реактор 1. Как только взрываемый участок проволоки займет положение между электродами 3 и 4, включают коммутатор 10, и происходит разряд емкостного накопителя энергии 9 на взрываемый участок алюминиевой проволоки 5. Алюминиевая проволока взрывается, разрушаясь на жидкие наночастицы размером 70-120 нм, которые разлетаются в реакторе, взаимодействуют с перегретым насыщенным водяным паром, образуя окислы алюминия и водород. При этом реакция окисления жидких алюминиевых частиц идет по двум уравнениям:

2Аl+2Н2O=2АlOOН+Н2

2Аl+6Н2O=2Аl(ОН)3+3Н2

Состав продуктов реакции окисления алюминия
Энергия, введенная в алюминиевую проволоку, кДж/г Состав продуктов реакции при окислении алюминия в среде насыщенного водяного пара Количество водорода (л) на 1 кг алюминия
АlOOН Аl(ОН)3 Н2
9 30 70 995
10 82 18 564
15 85 15 516
20 80 20 580

Выход водорода по первой и второй реакции разный, поэтому предпочтительнее, чтобы взаимодействие жидких алюминиевых наночастиц с насыщенным водяным паром проходило по второй реакции, так как производительность водорода в этом случае больше, чем при первой реакции.

Окислы алюминия выводят из реактора по магистрали выхода продуктов реакции 7, а влажный водород выводят из реактора по магистрали выхода водорода 6.

Если в нижнюю часть реактора подать воду и произвести взрыв проволоки в верхней части реактора в среде перегретого насыщенного водяного пара, то алюминиевая проволока одновременно прореагирует в нижней части реактора с водой, а в верхней - с насыщенным водяным паром. Причем в этом случае в составе продуктов реакции будет преобладать Аl(ОН)3, так как его образование происходит при более низких температурах, а следовательно, производительность водорода будет выше.

Если проволоку перед взрывом нагреть до температуры плавления, то количество энергии, вводимое в проволоку для ее взрыва, снижается пропорционально повышению температуры проволоки.

Пример реализации способа. Осуществляют получение водорода путем взрыва алюминиевой проволоки в среде перегретого насыщенного водяного пара. Для осуществления способа используют проволоку, изготовленную из алюминия, например, диаметром 0,3 мм и длиной взрываемого отрезка 110 мм. Для этого необходима емкость накопителя 2,75 мФ. Энергия, введенная в проволоку, составляет 14,7 кДж/г. Перед взрывом проволоки реактор заполняют перегретым насыщенным водяным паром с температурой 350-400°С. На заготовку подают энергию 14,7 кДж/г. Энергию на заготовку подают в течение 3,3 мкс. Проволока взрывается, разрушается на жидкие наночастицы размером 70-120 нм, которые разлетаются в реакторе, взаимодействуют с перегретым насыщенным водяным паром, образуя окислы алюминия и водород. Средний размер частиц окислов алюминия составляет 80 нм. Таким образом, из 1 кг алюминиевой проволоки получаем 516 л водорода.

Предлагаемый способ позволяет повысить производительность получения водорода в несколько порядков и снизить энергозатраты на его получение в 3 раза.

1. Способ получения водорода, заключающийся в конверсии перегретого насыщенного водяного пара в реакторе с электродами, отличающийся тем, что в реактор периодически вводят алюминиевую проволоку, которую пропускают между электродами в среде перегретого насыщенного водяного пара, или в нижнюю часть реактора подают воду, и алюминиевая проволока реагирует в нижней части реактора с водой, а в верхней - с насыщенным водяным паром, на электроды периодически подают электрический импульс с плотностью введенной в проволоку энергии 10-20 кДж/г, периодически производят взрыв алюминиевой проволоки на жидкие наночастицы алюминия, которые вступают в реакцию с насыщенным водяным паром или в нижней части реактора - с водой, а в верхней - с насыщенным водяным паром, образуя окислы алюминия и газообразный водород.

2. Способ по п.1, отличающийся тем, что алюминиевую проволоку перед взрывом нагревают до температуры плавления.



 

Похожие патенты:

Изобретение относится к области химии и может быть использовано в производстве водородного топлива. .

Изобретение относится к энергетике и может быть использовано для получения тепловой энергии:- автономно для подачи перегретого пара на промышленные и бытовые теплообменники, турбоустановки, турбогенераторы и другие потребители перегретого водяного пара;- в ядерных энергетических установках с реакторами типа ВВЭР как для непосредственного перегрева насыщенного пара, так и для смешения насыщенного пара с перегретым паром с целью повышения коэффициента полезного действия, увеличения мощности, сокращения расхода охлаждающей воды, понижение влажности пара перед последними ступенями турбин, что позволит заменить турбины влажного пара на турбины перегретого пара для атомных электрических станций и транспортных установок, например, судовых и корабельных с повышением коэффициента полезного действия, мощности, надежности и безопасности эксплуатации;- по мощности и своим весогабаритным характеристикам энергетическая установка может быть использована в транспортных энергоустановках железнодорожного типа;- при заводском блочном исполнении агрегатов установки она может доставляться на стройплощадку посредством: автомобильного транспорта, например трейлер с тягачом типа «Faun», воздушным транспортом транспортным самолетом типа «Руслан», экранопланом, водным транспортом речным и морским.

Изобретение относится к способу и устройству для выделения диоксида углерода и сульфида водорода из синтетического газа для превращения источника топлива в водород.

Изобретение относится к способу генерирования водяного пара по меньшей мере двух типов, обладающих разной чистотой, в процессах реформинга с водяным паром и к устройству для осуществления этого способа.

Изобретение относится к области химии и может быть использовано для получения синтез-газа из легких углеводородов. .

Изобретение относится к области химии и может быть использовано при получении водорода. .

Изобретение относится к области реакторов, используемых для осуществления реакций парового риформинга. .

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, применяемым при производстве водорода конверсией. .

Изобретение относится к области химии
Изобретение относится к катализаторам, способу его получения и способу получения синтез-газа путем каталитического превращения углеводородов в присутствии газов, содержащих кислород или воздух

Изобретение относится к области химии

Изобретение относится к области химии, в частности к способу получения водорода

Изобретение относится к способу импульсного потока для обессеривания циркулирующего водорода и к устройству для осуществления этого способа

Изобретение относится к способу получения продукта синтеза Фишера-Тропша из газообразной смеси углеводородов, содержащей метан, этан и, необязательно, углеводороды с более высоким числом атомов углерода, в которой содержание метана составляет по меньшей мере 60 об.%, путем осуществления следующих стадий: (а) адиабатический предварительный риформинг углеводородной смеси в присутствии катализатора риформинга, содержащего оксидный материал носителя и металл, который выбирают из группы, состоящей из Pt, Ni, Ru, Ir, Pd и Со, с целью превращения этана и необязательных углеводородов с более высоким числом атомов углерода в метан, диоксид углерода и водород, (b) нагревание газообразной смеси, полученной на стадии (а), до температуры выше, чем 650°С, (с) осуществление некаталитического неполного окисления путем введения в контакт нагретой смеси со стадии (b) с источником кислорода в реакторной горелке, с образованием выходящего из реактора потока, имеющего температуру между 1100 и 1500°С, (d) осуществление синтеза Фишера-Тропша с использованием в качестве сырья газа, содержащего водород и монооксид углерода, который получен на стадии (с) и (е) где продукт синтеза, полученный на стадии (d), разделяют на относительно легкий поток и относительно тяжелый поток, причем относительно тяжелый поток содержит продукт синтеза Фишера-Тропша, а относительно легкий поток содержит непревращенный синтез-газ, инертные вещества, диоксид углерода и C1 -С3 углеводороды, и где первую часть легкого потока рециркулируют на стадию (а) для того, чтобы подвергнуть ее предварительному риформингу, и где вторую часть легкого потока рециркулируют в реакторную горелку стадии (с) для того, чтобы подвергнуть ее неполному окислению, и где температуру на стадии (а) регулируют, устанавливая количество легкого потока, которое рециркулируют на стадию (а)

Изобретение относится к области химии и может быть использовано для разделения газов

Изобретение относится к способу пуска системы синтеза жидкого топлива, имеющей реактор десульфуризации, который производит гидрирование и десульфуризацию углеводородного сырьевого материала, риформинг-аппарат, который преобразует углеводородный сырьевой материал для получения синтез-газа, включающего газообразный монооксид углерода и газообразный водород в качестве основных компонентов, реактор Фишера-Тропша, который синтезирует жидкие углеводороды из газообразного монооксида углерода и газообразного водорода, содержащихся в синтез-газе, и реактор гидрирования, который производит гидрирование жидких углеводородов, синтезированных в реакторе Фишера-Тропша, при котором: отделяют часть газообразного водорода, содержащегося в синтез-газе, полученном в риформинг-аппарате, от синтез-газа при нормальном функционировании системы синтеза жидкого топлива; хранят часть отделенного газообразного водорода; и подают газообразный водород, накопленный в устройстве для хранения водорода, при запуске системы синтеза жидкого топлива, сначала в реактор гидрирования, перед пуском риформинг-аппарата, а затем в реактор десульфуризации, когда риформинг-аппарат запускается

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии метанола с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов различного назначения

Изобретение относится к области химии и может быть использовано для получения водорода и серы
Наверх