Противоопухолевые соединения

Изобретение касается новых противоопухолевых соединений общей формулы I

где R1-16 являются группами, независимо выбранными из водорода, защищенного или незащищенного гидроксила, C1-C24 алкила, C2-C24 алкенила, =O и ORa, OCORa; X и Y являются C5-C12 алкильными группами, которые замещены одной или несколькими C16 алкильными группами, гидроксильными группами и/или тетрагидропираном, который необязательно может быть замещен алкилом и/или группой ORa; Ra независимо выбирают из водорода и C112 алкила; и пунктирная линия показывает присутствие двойной связи. А также способа их получения, фармацевтической композиции, на основе данных соединений, обладающей противоопухолевой активностью, и применения соединений формулы I для получения лекарственного средства, направленного на лечение рака. Технический результат: получены и описаны новые соединения, которые обладают цитотоксической активностью и могут быть использованы для лечения рака. 4 н. и 11 з.п. ф-лы, 2 табл.

 

Уровень техники, к которой относится изобретение

Изобретение относится к новым противоопухолевым соединениям, содержащим их фармацевтическим композициям и их применению в качестве противоопухолевых агентов.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Было показано, что некоторые асимметричные димерные макролиды обладают противоопухолевыми, противовирусными и/или противогрибковыми свойствами. В частности, Kitagawa и др. (Chem. Pharm. Bull., 1994, 42(1), 19-26) выделили несколько асимметричных димерных макролидов из окинавской морской губки Theonella swinhoei:

Показано, что Swinholide А (1), В (2) и С (3) проявляют цитотоксическую активность против L1210 и КВ клеток со значением IC50 0,03, 0,30 и 0,14 мкг/мл (для L1210) и 0,04, 0,04 и 0,05 мкг/мл (для КВ), соответственно. Однако наблюдалось, что isoswinhokide A (4) показывал меньшую цитотоксичность [IC50 1,35 мкг/мл (L1210) и 1,1 мкг/мл (КВ)] по сравнению с другими, ранее указанными аналогами.

Kitagawa и др. также проверили цитотоксичность некоторых димеров, полученных из Swinholide А (1):

наблюдая, что оба димера (8 и 9) показывают слабую способность ингибирования роста КВ клеток (51,1% ингибирования при 50 мкг/мл и 19,3% ингибирования при 10 мкг/мл, соответственно).

Другие димерные макролиды, которые были получены из Swinholide А (1), были следующими:

Цитотоксичность данных соединений (10-13) против L1210 и КВ клеток является меньшей, чем цитотоксичность, показанная Swinholide A (1).

Помимо этого, Kitagawa и др. проверили противоопухолевый эффект Swinholide A (1) и его изомеров против Р388 лейкемии у CDF1 мыши. Неожиданно было обнаружено, что Swinholide А (1), isoswinholide А (4) и изомер 11 были токсичны и не показали многообещающей противоопухолевой активности.

Кроме этого, заявка на патент WO 88/00195 описывает следующие соединения (Misakinolide А (15) и производные (15)), которые были выделены из морской губки рода Theonella:

В указанной заявке на патент описывается противоопухолевая активность Misakinolide А (14) in vitro против Р388, НСТ-8, А549 и MDA-MB-231 раковых клеток. Также было описано, что кроме ярко выраженной цитотоксичности [IC50 0,035 мкг/мл (L1210)], Misakinolide А также обладает противоопухолевой активностью [T/C 140% при дозе 0,1 мг/кг (мыши), против Р388 лейкемии] (Chem. Pharm. Bull., 1994, 42(1), 19-26).

Рак продолжает быть одной из главных причин смерти среди видов животных и человека. Были предприняты и продолжают предприниматься огромные усилия, направленные на поиск средств предохранения и новых эффективных противоопухолевых агентов, которые внесут вклад в увеличение терапевтического арсенала, необходимого для эффективного лечения пациентов с этим заболеванием. В этом смысле настоящее изобретение направлено на решение данной проблемы, предоставляя новые соединения, эффективные при лечении рака.

Сущность изобретения

Настоящее изобретение направлено на асимметрические димерные макролиды с общей формулой I, а также на их соответствующие фармацевтически приемлемые соли, производные, пролекарства и стереоизомеры,

где R1-16 являются группами, независимо выбранными из водорода, защищенного или незащищенного гидроксила, замещенного или незамещенного С124 алкила, замещенного или незамещенного С224 алкенила, замещенного или незамещенного С224 алкинила, =О, ORa, OCORa, NRaRb, NRaCORb, CONRaRb, CORa, COORa и галогена.

X и Y являются группами, независимо выбранными из замещенного или незамещенного С124 алкила, замещенного или незамещенного С224 алкенила, замещенного или незамещенного С224 алкинила, =О, ORa, OCORa, NRaRb, NRaCORb, CONRaRb, CORa, COORa и галогена;

Ra и Rb являются группами, независимо выбранными из водорода, галогена, замещенного или незамещенного С112 алкила, замещенного или незамещенного С212 алкенила, замещенного или незамещенного С212 алкинила, замещенного или незамещенного арила и замещенного или незамещенного гетероцикла; и пунктирная линия показывает необязательное присутствие двойной связи.

Изобретение также относится к выделению соединений формулы I из губок семейства Theonellidae, рода Theonella и вида swinhoei, и к образованию производных выделенных соединений.

Кроме этого, настоящее изобретение также относится к соединению общей формулы I или его фармацевтически приемлемой соли, производному, пролекарству или стереоизомеру, для его применения в качестве лекарственного средства.

Изобретение также направлено на применение соединения формулы I или его фармацевтически приемлемой соли, производного, пролекарства или стереоизомера для получения лекарственного средства для лечения рака.

Также настоящее изобретение относится к фармацевтическим композициям, содержащим соединение формулы I или его соответствующие фармацевтически приемлемые соли, производные, пролекарства или стереоизомеры в смеси с фармацевтически приемлемым эксципиентом или разбавителем.

Подробное описание изобретения

Соединения, являющиеся целью изобретения, относятся к асимметрическим димерным макролидам общей формулы I

где R1-16 являются группами, независимо выбранными из водорода, защищенного или незащищенного гидроксила, замещенного или незамещенного С124 алкила, замещенного или незамещенного С224 алкенила, замещенного или незамещенного С224 алкинила, =О, ORa, OCORa, NRaRb, NRaCORb, CONRaRb, CORa, COORa и галогена.

X и Y являются группами, независимо выбранными из замещенного или незамещенного С124 алкила, замещенного или незамещенного С224 алкенила, замещенного или незамещенного С224 алкинила, =О, ORa, OCORa, NRaRb, NRaCORb, CONRaRb, CORa, COORa и галогена;

Ra и Rb являются группами, независимо выбранными из водорода, галогена, замещенного или незамещенного С124 алкила, замещенного или незамещенного С224 алкенила, замещенного или незамещенного С224 алкинила, замещенного или незамещенного арила и замещенного или незамещенного гетероцикла; и пунктирная линия показывает необязательное присутствие двойной связи.

Группы или заместители в данных соединениях могут быть выбраны согласно следующим условиям.

Термин алкил обозначает линейную или разветвленную углеродную цепь, имеющую от 1 до 24 атомов углерода. Предпочтительными являются алкильные группы от 1 до 6 атомов углерода, и особенно предпочтительны те, которые состоят из 1, 2, 3 и 4 атомов углерода. В соединениях настоящего изобретения особенно предпочтительными алкильными группами являются метильная, этильная, пропильная, изопропильная, бутильная, втор-бутильная и трет-бутильная группы. Также термин алкил, используемый в настоящем изобретении, относится как к циклической, так и нециклической группе, принимая во внимание, что циклические группы будут содержать, по крайней мере, три атома углерода в кольце. Другими предпочтительными алкильными группами являются такие, которые имеют от 5 до 12 атомов углерода, причем особенно предпочтительны такие, которые состоят из 6, 7, 8, 9 и 10 атомов углерода. В соединениях настоящего изобретения особенно предпочтительными алкильными группами являются гексильная, гептильная, 1,3-диметилпентильная, октильная, 1,3-диметилгексильная и нонильная группы.

Термины алкенил и алкинил обозначают линейную или разветвленную ненасыщенную алкильную цепь, содержащую от 2 до 24 атомов углерода, и включающую одно или несколько ненасыщенных положений. Предпочтительными являются алкенильные, алкинильные группы, имеющие от 2 до 6 атомов углерода, и особенно предпочтительны те, которые состоят из 2, 3 и 4 атомов углерода. Также термины алкенил и алкинил, используемые в настоящем изобретении, относятся как к циклическим, так и нециклическим группам, принимая во внимание, что циклические группы будут содержать, по крайней мере, три атома углерода в кольце. Другими предпочтительными алкенильными и алкинильными группами являются такие, которые имеют от 5 до 12 атомов углерода. В число арильных групп, которые могут присутствовать в соединениях изобретения, включены такие, которые содержат одно или несколько колец, включая множественные кольца с разделенными или конденсированными арильными или гетероарильными группами. Обычно арильные группы содержат от 1 до 3 колец и от 4 до 18 атом углерода в кольце(ах). Предпочтительными арильными группами являются фенил, нафтил, бифенил, фенантрил и антрацил, причем все они замещены или незамещены.

В число гетероциклических групп, которые могут присутствовать в соединениях изобретения, включены как гетероароматические, так и гетероалициклические группы. Гетероароматические группы содержат один, два или три гетероатома, выбранных из N, O и S, например, включая группы, такие как кумаринил, предпочтительно 8-кумаринил, хинолинил, предпочтительно 8-хинолинил, пиридил, пиразинил, пиримидил, фурил, пирролил, тиенил, тиазолил, оксазолил, имидазолил, индолил, бензофуранил и бензотиазолил. Гетероалициклические группы содержат один, два или три гетероатома, выбранных из N, O и, S, и, например, включая группы, такие как тетрагидрофуранил, тетрагидропиранил, пиперидинил, морфолин и пирролидинил. Гетероциклические группы могут быть как замещенными, так и незамещенными.

Ранее упомянутые группы, возможно, могут быть замещены по их одному или нескольким доступным положениям, независимо одним или несколькими подходящими заместителями, такими как OR`, =О, SR`, SOR`, SO2R`, NO2, NHR`, N(R`)2, =N-R`, NHCOR`, N(COR`)2, NHSO2R`, NR`C(=NR`)NHR`, CN, галоген, С(=O)R`, COOR`, OC(=O)R`, CONHR`, CON(R`)2, замещенный или незамещенный С124 алкил, замещенный или незамещенный С224 алкенил, замещенный или незамещенный С224 алкинил, замещенный или незамещенный арил и замещенный или незамещенный гетероцикл, где каждая группа R` независимо выбрана из Н, ОН, NO2, NH2, SH, CN, галогена, =О, С(=O)Н, С(=O)алкила, СООН, замещенного или незамещенного С112 алкила, замещенного или незамещенного С212 алкенила, замещенного или незамещенного С212 алкинила, замещенного или незамещенного арила и замещенного или незамещенного гетероцикла. В число галогеновых заместителей, которые могут присутствовать в соединениях настоящего изобретения, включены F, Cl, Br и I. В случае таких групп, которые в свою очередь замещены, соответствующие заместители могут быть выбраны из указанного здесь списка заместителей.

Гидроксильная группа, возможно, может быть защищена. Существует огромное число гидроксильных защитных групп, и они хорошо известны специалисту в данной области техники. Для справки см. Protecting groups, Kocienski, 2004, 3-е изд.

Термин «фармацевтически приемлемые соли, производные, пролекарства» относится к любой фармацевтически приемлемой соли, сложному эфиру, сольвату, гидрату или какому-либо другому соединению, которое после его введения пациенту способно (напрямую или опосредованно) дать соединение формулы I. Однако следует принимать во внимание, что не фармацевтически приемлемые соли также находятся в рамках изобретения, так как они могут быть пригодными при получении фармацевтически приемлемых солей. Получение солей, пролекарств и производных может быть осуществлено с помощью способов, известных в области техники.

Например, фармацевтически приемлемые соли соединений настоящего изобретения получаются из соответствующих соединений, имеющих кислотные или основные части, с помощью традиционных химических методов. В основном указанные соли образуются, например, посредством реакции соответствующей основной или свободнокислотной формы указанного соединения со стехиометрическим количеством подходящего основания или кислоты в воде, органическом растворителе или в их смеси. Обычно предпочтительными неводными средами являются эфир, этилацетат, этанол, изопропанол или ацетонитрил. В число солей, полученных добавлением кислоты, входят соли, полученные добавлением минеральных кислот, такие как гидрохлорид, гидробромид, гидроиодид, сульфат, нитрат и фосфат, и соли, полученные добавлением органических кислот, такие как ацетат, трифторацетат, малеат, фумарат, цитрат, оксалат, сукцинат, тартрат, соль яблочной кислоты, соль миндальной кислоты, метансульфанат и паратолуолсульфанат. В число солей, полученных добавлением основания, входят неорганические соли, такие как натриевые, калиевые, кальциевые и аммонийные соли, и органические соли, такие как соли этилендиамина, этаноламина, N,N-диалкиленэтаноламина, триэтаноламина и основные соли аминокислот.

Соединения настоящего изобретения могут быть в кристаллической форме как в виде свободных соединений, так и сольватов (например, гидратов), причем обе формы включены в объем настоящего изобретения. Способы сольватации в основном хорошо известны в области техники.

Любое соединение, которое является пролекарством соединения общей формулы I, включено в объем настоящего изобретения. Термин «пролекарство» используется в широком смысле и включает все производные, которые могут быть превращены in vivo в любые соединения изобретения. Специалист в области техники знает, какие это производные могут быть, и они включают, например, соединения, в которых свободная гидроксильная группа превращена в сложноэфирное производное, или сложный эфир модифицирован посредством переэтерификации или образования подходящего амида.

Соединения настоящего изобретения, представленные общей формулой I, имеют более чем один стереогенный центр, так что изобретение в равной степени относится к каждому и любому из возможных энантиомеров и диастериомеров, которые могут быть получены, а также к возможным Z и Е стереоизомерам, которые могут быть образованы при наличии в молекуле двойной связи. В рамках настоящего изобретения находятся как чистые изомеры, так и смеси изомеров указанных соединений.

Предпочтительными соединениями настоящего изобретения являются такие, у которых R1-16 являются группами, независимо выбранными из водорода, защищенного или незащищенного гидроксила, ORa, OCORa, =О, NRaRb, NRaCORb, галогена и замещенного или незамещенного С124 алкила, где Rа определен выше. Особенно предпочтительными являются такие соединения, в которых R1-7 и R9-15 являются группами, независимо выбранными из водорода, гидроксила, С16 алкила и ORа; и среди них предпочтительными являются водород, гидроксил, метил и метокси. Также особенно предпочтительно, чтобы R8 и R16 группы были =О.

Предпочтительно Х и Y являются группами, независимо выбранными из замещенного или незамещенного С512 алкила и замещенного или незамещенного С512 алкенила. Особенно предпочтительно, чтобы они были независимо замещены одним или несколькими подходящими заместителями, и, в частности, замещены одним или несколькими следующими заместителями: ОН, OR`, NHCOR` и замещенным или незамещенным гетероциклом, где R` определен ранее. Более предпочтительно, чтобы X и Y были С512 алкильными группами, замещенными одной или несколькими гидроксильными группами и/или замещенными гетероциклами. Особенно предпочтительно, когда X и Y являются

В данных участках структуры предпочтительно наличие двойных связей, показанных пунктирной линией в общей формуле I.

Следующие соединения являются особенно предпочтительными соединениями настоящего изобретения:

Соединение А

Соединение А является природным продуктом, выделенным из морской губки, а именно из губки вида Theonella swinhoei (Класс: Demosponhiae, Подкласс: Tetractinomorpha, Отряд: Lithistida, Подотряд: Triaenosina, Семейство: Theonellidae). Указанный организм был собран на Островах Глорьез (северо-запад Мадагаскара).

Данные виды губок обычны для запада Тихого Оокеана, в Индийском Океане и в Красном Море, причем располагаются по побережью на глубине до 48 метров. Образцы были найдены:

- Кения, Момбаса, Shelly Beach, на внешнем откосе рифа, на глубине 12-16 метров.

- North Kenya Banks (02° 25,`ю.ш. - 40° 42,5` в.д., на глубине 48 метров)

- Tulear, область Ifaty (Мадагаскар)

- Острова Albadra (северо-запад Мадагаскара)

- Ternate, Celebes, Ambon, Manila, Formosa (Филиппины), Тайвань.

Кроме этого, аналоги указанных соединений могут быть синтезированы специалистом в данной области техники с помощью, например, кислотного или основного гидролиза, окисления, этерификации, альдолльной конденсации, озонолиза, реакции Виттига, реакции Хорнера-Эммонса, эпоксидирования по Шарплессу или реакции Пиктеда-Спенглера. Соединение А и его аналоги могут быть синтезированы, например, посредством описанных синтезов подходящим образом защищенных мономерных единиц Swinholide A и Misakinolide A, последующего проведения реакций макролактонизации, которые позволяют получить Соединение А и его аналоги (см. K-S. Yeung и I. Paterson. Angew. Chem. Int. Ed. 2002, 41, 4632-4653).

Важным аспектом соединений настоящего изобретения является их биологическая активность и, в частности, их цитотоксическая активность. Следовательно, настоящее изобретение обеспечивает новые фармацевтические композиции соединений общей формулы I, имеющих цитотоксический эффект, а также их применение в качестве противоопухолевых агентов. Кроме этого, настоящее изобретение также обеспечивает фармацевтические композиции, содержащие соединение настоящего изобретения или фармацевтически приемлемую соль, производное, пролекарство или стереоизомер в смеси с фармацевтически приемлемым наполнителем или разбавителем.

Фармацевтические композиции, включенные в качестве примеров, являются любыми твердыми (таблетки, пилюли, капсулы, гранулы и т.п.) или жидкими (растворы, суспензии или эмульсии) композициями для орального, топического или парентерального введения. Фармацевтические композиции, содержащие соединения настоящего изобретения, также могут быть получены в форме липосом или наносфер, составов замедленного высвобождения или любых других традиционных систем высвобождения.

Введение соединений или композиций настоящего изобретения может быть осуществлено с помощью любых обычных способов, таких как внутривенное вливание, составы для орального введения и/или внутрибрюшинного и внутривенного введения. Предпочтительно, чтобы используемые времена вливания не превышали 24 часа, предпочтительно были от 1 до 12 часов и еще более предпочтительно от 1 до 6 часов. Короткие времена вливания особенно желаемы, так как это позволяет проводить лечение без необходимости проводить ночь в госпитале. Однако времена вливания от 12 до 24 часов и включая большие, при необходимости могут быть использованы. Вливание может быть проведено с подходящими интервалами, такими как от 1 до 4 недель.

Правильная доза соединений меняется в зависимости от типа используемого состава, формы применения и местоположения, хозяина и опухоли, которую необходимо лечить. Также должны приниматься во внимание другие факторы, такие как возраст, вес тела, пол, режим питания, время введения, скорость выведения, состояние здоровья хозяина, комбинация активных ингредиентов, чувствительность с точки зрения реакций и серьезности заболевания. Введение может быть проведено непрерывно или периодически с максимально переносимой дозой.

Соединения и композиции настоящего изобретения могут быть использованы вместе с другими активными ингредиентами в комбинированной терапии. Другие активные ингредиенты могут быть частью той же композиции или могут быть введены посредством другой композиции, причем одновременно или в различное время.

ПРИМЕРЫ

ПРИМЕР 1: ОПИСАНИЕ ОРГАНИЗМА И МЕСТО СБОРА

Несколько образцов губки Theonella swinhoei были собраны при погружении на Островах Глорьез (северо-запад Мадагаскара, запад Индийского Океана) на глубине 18 метров в ноябре 2003 г. Координаты места сбора образцов являются следующими: широта 11° 34` 995`` с.ш. и долгота 47° 16` 829`` в.д. Дно моря было скалистым и песчаным, и подложка образцов была скалистой.

Описание организма: массивная губка. Верхняя поверхность покрыта несколькими округлыми отверстиями (поры). Поверхность является гладкой и консистенция твердая, однако выдержанные образцы являются хрупкими. Цвет живой губки коричневый и ее внутренность светло-бежевого цвета. Дермальная мембрана равномерно пористая. Данные образцы легко характеризуются посредством скелетных элементов. Скелет образован неправильными узлами стронгилидов, направленных по касательным к поверхности, и помощью малоразветвленных спикул (кремнистая спикула губок неправильной формы). Внутренний скелет состоит из тетразоновых спикул, которые могут быть гладко или слабо покрыты бугорками.

ПРИМЕР 2: ВЫДЕЛЕНИЕ СОЕДИНЕНИЯ А

Замороженный образец (604 г) губки Примера 1 нарезают на кусочки и экстрагируют Н2О (3×500 мл) и затем смесью МеОН:CH2Cl2 (50:50, 3×500 мл). Объединенные органические экстракты концентрируют, получая остаток (7,48 г), который разделяют вакуумной жидкостной хроматографией на Lichroprep RP-18 с градиентом от Н2О:МеОН до CH2Cl2. Соединение А (5,8 мг) выделяют из фракции, элюированной с МеОН, которую очищают с помощью полупрепаративной ВЭЖХ (SymmetryPrep C-18, 7 мкм, 7,8 мм×150 мм, градиент Н2О:CH3CN, УФ-детектирование), получая фракцию, содержащую Соединение А, и которую снова очищают с помощью полупрепаративной ВЭЖХ (SymmetryPrep C-18, 7 мкм, 19 мм×150 мм, градиент Н2О:CH3CN, УФ-детектирование).

Соединение А: MS (ESI)=1362 (M+). MS (APCI)=1345(M+1-H2O)+. 1Н и 13С ЯМР см. Таблицу 1.

Соединение А

Таблица 1
Данные 1Н и 13С ЯМР (CD3OD) соединения А
1 Н, мультиплетность, J=Гц 13 C COSY HMBC
1/32 - 170,7/171,1 - -
2 5,91, д, 16,0 116,1 H-3 C-1, C-4
3 7,50, д, 16, 0 152,4 H-2 C-1, C-2, C-4, 4-Мe, C-5
4/33 - 135,6/129,9 - -
4-Мe/33-Мe 1,86, с/1,89, с 12,7/13,22 H-5/H-34 C-3, 4-Мe, C-5/C-32, C-33, C-34
5/34 6,16, т, 7,0/6,99, т, 6,0 140,9/142,1 4-Мe, H-6/33-Мe, H-35 C-3, C-4, C-6, C-7/C-32, 33-Мe, C-35, C-36
6/35 2,44, м/2,38, м 38,8/38,6 H-5, H-7/H-34, H-36 C-4, C-5, C-7/C-33, C-34, C-36
7/36 4,02, м/4,08, м 68,4/67,8 H-6, H-8/H-35, H-37 C-8/C-37
8/37 1,38, м/1,80, мa 41,58/41,63b H-7, H-9/H-36, H-38 -
9/38 4,49, д, 10,5 70,60/70,64с H-8/H-37, H-40 C-10/C-39
10/39 5,68, м 131,1 H-11, H-13/H-40, H-41 C-9, C-11, C-12/C-38, C-40, C-41
11/40 5,83, м 125,05/125,20d H-10, H-12/H-38, H-39 C-10/C-39
12/41 2,00, м 32,37/32,44е H-11, H-13/H-39, H-42 C-10, C-11/C-39, C-40
13/42 3,57, м 65,5/65,7f H-10, H-12, H-14/H-41, H-43 -
14/43 1,58, м/1,82, мg 37,1/37,4h H-13, H-15/H-42, H-44 C-13/C-42
15/44 3,78, м 79,04/79,05i H-14/H-43 -/C-45
15-ОМе/44-ОМе 3,33, с 57,1/57,2j - C-15/-
16/45 1,58, м 43,6/43,8k 16-Мe/45-Мe C-15, C-18, C-19/C-47, C-48
1б-Ме/45-Ме 0,84, д, 5,5/0,86, д, 5,5l 9,05/9,40m H-16/H-45 C-15, C-16, C-17/C-46, C-44, C-45
17/46 3,65, м/3,66, м11 73,8/74,2° H-18/H-47 -
18/47 1,62, м/1,68, мp 39,0/39,2кв. H-17, H-19/H-46, H-48 C-19/C-48
19/48 3,94, м 70,9/70,8r H-18/H-47 -
20/49 1,90, м 40,2/40,5 H-21, 20-Мe/H-50, 49-Мe C-21/C-50
20-Ме/49-Ме 0,92, д, 7,5/0,95, д, 7,5с 9,4/9,5t H-20/H-49 С-19, С-20, С-21/С-48, С-49, С-50
21/50 5,41, м 76,5/76,0 H-20/H-49 С-19, С-20, С-22, 22-Ме, С-23, С-32/С-1, С-48, С-49, 51-Мe, C-51, С-52
22/51 2,03, м 38,5/38,3 22-Мe/51-Мe 22-Ме, С-23/51-Ме, С-52
22-Ме/51-Ме 0,97, м 10,1/9,9 H-22/H-51 С-22, С-23/С-51, С-52
23/52 3,13, дд, 2,0, 8,0 77,7/77,6U - -
24/53 1,73, м 34,7 24-Мe/53-Мe -
24-Ме/53-Ме 0,98, д, 7,0/0,99, д, 7,0v 18, 0/18,1w H-24/H-53 С-24, С-25/С-53, С-54
25/54 1,23, м/1,43, мx 25,30/25,35 H-26/H-55 С-24, С-26/С-53, С-55
26/55 1,94, м 30,0 H-25, H-27/Н-54, Н-56 С-24, С-29/С-53, С-58
27/56 4,01, м 73,03/73,06y Н-26, Н-28/Н-57, Н-55 -
28/57 1,52, м/1,88, мz 36,1 Н-27, Н-29/Н-56, Н-58 С-26, С-27, С-29, С-ЗО/С-55, С-56, С-58, С-59
29/58 3,62, м 74,5 Н-28, Н-ЗО/Н-57, Н-59 -
29-ОМе/58-ОМе 3,36, с 55,6 - С-29/С-58
30/59 1,11, кв., 12,5/2,03, мaz 40,0 Н-29, Н-31/Н-58, Н-60 С-28, С-29, С-31/С-57, С-58, С-60
31/60 3,76, м 66,0 Н-30/Н-59 -
31-Ме/О-Ме 1,21, д, 6,5 22,1 - С-29, С-30, С-31/С-58, С-59, С-60
a-az верхний индекс в ячейке означает, что значения химического сдвига могут быть взаимозаменяемыми.

ПРИМЕР 3: БИОЛОГИЧЕСКИЙ АНАЛИЗ ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТИ

Анализ противоопухолевой активности позволяет обнаруживать выделения или соединения с цитотоксической активностью (клеточной гибелью) или цитостатической активностью (ингибирование роста) в in vitro культурах опухолевых клеток человеческого происхождения.

ЛИНИИ КЛЕТОК

Название № В Американской коллекции типовых культур Виды Ткани Характеристики
А549 CCL-185 Человек Легкое “NSCL” рак легкого
НТ29 НТВ-38 Человек Толстая кишка Аденокарцинома толстой кишки, аденокарцинома молочной железы
MDA-MB-231 HTB-26 Человек Молочная железа Her2/neu+ (плевральный выпот)

ИССЛЕДОВАНИЯ ИНГИБИРОВАНИЯ КЛЕТОЧНОГО РОСТА С ПОМОЩЬЮ КОЛОРИМЕТРИЧЕСКОГО АНАЛИЗА

Измерение клеточного роста in vitro проводилось с помощью колориметрического анализа с сульфородомином В (SRB) (следуя адаптации, ранее описанного способа Philip Skehan и др. 1990, J. Natl. Cancer Inst., 82:1107-1112).

В данном типе анализа используется 96-луночные микроплашки культур (Mosmann, 1983, Faircloth, 1988). Большинство использованных линий клеток получено из Американской коллекции типовых культур (АТСС) и от различных типов человеческих опухолей.

Культуры клеток поддерживались в культурной среде DMEM (с добавлением 10% эмбриональной бычий сыворотки (FBS), 1% пенициллин/стрептомицин 1% глутамин) при 37°С, 5% СО2 и 98% влажности.

Для анализов, клетки трипсинизируются и высеваются в 96-луночные микроплашки при различной концентрации в зависимости от линии клеток и инкубируются в течение 24 часов в активной среде без ингредиента с целью их стабилизации. Затем культуры обрабатываются (конечная концентрация изменяется в зависимости от типа анализа) носителем (DMSO:DMEM, 1:1) или активным ингредиентом. После 48 часов экспонирования активному ингредиенту противоопухолевый эффект измеряют посредством указанного ранее SRB способа, который по существу состоит из: фиксации клеток 1% раствором глутарового альдегида (30 минут, комнатная температура), промывки фиксированных клеток фосфатно-буферным солевым раствором (3 промывки, комнатная температура), окрашивания культур 0,4% раствором SRB (30 минут, комнатная температура), промывки красящего агента в 1% уксусной кислоте (3 промывки, комнатная температура), сушки планшетов на воздухе и окончательной экстракции красящего агента Трис-буфером. Количественное измерение анализа проводят с помощью показаний оптической плотности планшетов в спектрофотометрическом планшет-ридере при одной длине волны 490 нм.

Для определения клеточного роста из полученных значений оптической плотности применялся алгоритм (эквивалентный алгоритму, применяемому в программе противоопухолевого скрининга NCI), который позволяет рассчитывать проценты роста по отношению к нулевому времени (начало эксперимента) как в отсутствии, так и в присутствии активного ингредиента в исследовании. Рассчитанные параметры клеточного ответа по отношению к активному ингридиенту являются следующими: GI50=концентрация, вызывающая 50% ингибирования роста, TGI=концентрация, вызывающая полное ингибирование роста (цитостатический эффект) и LC50=концентрация, вызывающая 50% клеточной гибели (цитотоксический эффект).

В Таблице 2 представлены данные биологической активности Соединения А.

Таблица 2
Данные противоопухолевой активности (Молярные)
Толстая кишка Молочная железа NSCL (легкое)
HT29 MDA-MB-231 A549
Соединение А GI50 3,38E-7 8,08E-7 2,28E-7
TGI 8,81E-7 2,35E-6 2,28E-7
LC50 2,20E-6 4,77E-6 5,29E-7

1. Соединение общей формулы I или его фармацевтически приемлемая соль или стереоизомер,

где R1-16 являются группами, независимо выбранными из водорода, защищенного или незащищенного гидроксила, C1-C24 алкила, С224 алкенила, =O и ORa, OCORa;
X и Y являются C5-C12 алкильными группами, которые замещены одной или несколькими C16 алкильными группами, гидроксильными группами и/или тетрагидропираном, который необязательно может быть замещен алкилом и/или группой ORa;
Ra независимо выбирают из водорода и C1-C12 алкила; и
пунктирная линия показывает присутствие двойной связи.

2. Соединение по п.1, где R1-7 и R9-15 являются группами, независимо выбранными из водорода, гидроксила, C16 алкила и ORa.

3. Соединение по п.2, где R1-7 и R9-15 являются группами, независимо выбранными из водорода, гидроксила, метила и метокси.

4. Соединение по п.3, где R1, R5, R9 и R13 являются метилом.

5. Соединение по п.3, где R2, R4, R7, R10; R12 и R15 являются гидроксилом.

6. Соединение по п.3, где R3 и R11 являются водородом.

7. Соединение по п.3, где R6 и R14 являются метокси.

8. Соединение по любому из пп.1-7, где R8 и R16 являются =O.

9. Соединение по любому из пп.1-7, где Х и Y являются

10. Соединение по п.8, где Х и Y являются

11. Соединение по п.1, имеющее следующую формулу:

12. Способ получения соединения, определенного по любому из предшествующих пунктов, включающий его экстракцию и выделение из организма вида Theonella swinhoei.

13. Фармацевтическая композиция, обладающая противоопухолевой активностью, содержащая соединение по любому из пп.1-11 или его фармацевтически приемлемую соль или стереоизомер, в смеси с фармацевтически приемлемым эксципиентом или разбавителем.

14. Соединение по п.1 или его фармацевтически приемлемая соль или стереоизомер для применения в качестве лекарственного средства, обладающего противоопухолевой активностью.

15. Применение соединения по любому из пп.1-11 или его фармацевтически приемлемой соли или стереоизомера для получения лекарственного средства, направленного на лечение рака.



 

Похожие патенты:

Изобретение относится к новым производным миканолида формулы I: соответствующей общим субформулам (I)1 и (I)2: где R1, R2 и R3 имеют значения, указанные в описании. .

Изобретение относится к новым производным ксантона формулы I где R1 представляет собой атом водорода, метальную группу, С2-С6-алкильную группу, ацетильную группу, -СО-С2-6-алкильную группу или -СО-С6-18-арильную группу, незамещенную или замещенную -ОН или -O-С1-6-алкильной группой; или противо-катион, выбранный из группы, включающей катионы щелочных или щелочноземельных металлов, таких как Li+, Na+, K+, Са++, Mg++, NR16R17R18R19(+), где R16, R17, R18 и R19 независимо друг от друга выбраны из атома водорода или C1-С6-алкила; R2 и R3 образуют часть группы с двойной связью С17= C18, или его таутомер, энантиомер, или стереоизомер, или его физиологически приемлемая соль, или сольват, или их смеси.

Изобретение относится к антипаразитическим агентам и, в частности, к соединениям, родственным авермектинам и милбемицинам, но содержащим заместители в 3-положении. .

Изобретение относится к новым производным миканолида формулы I: соответствующей общим субформулам (I)1 и (I)2: где R1, R2 и R3 имеют значения, указанные в описании. .

Изобретение относится к новым способам получения циклических перксиацеталь-лактоновых, -лактоловых или эфирных соединений. .

Изобретение относится к способу получения триоксепана формулы (I) содержащего менее 3,5 мас.% диалкилпероксида относительно общего количества пероксидов, включающий стадии взаимодействия гликоля формулы R3CHOH-CH2 -C(CH3)2OH с пероксидом водорода в присутствии кислоты с образованием гидропероксида гликоля, очистки гидропероксида гликоля, взаимодействия очищенного гидропероксида гликоля с кетоном или альдегидом формулы R1R2CO в присутствии кислоты с образованием триоксепана и очистки триоксепана, где R1, R2 и R3 выбирают, независимо, из водорода и (С1-С20)-алкила, (С3 -С20)-циклоалкила, (С6-С20)-арила, (С7-С20)-аралкила и (С7-С 20)-алкарила, где указанные группы могут включать линейные или разветвленные алкильные группы, в то время как две группы из R1-3 могут соединяться с образованием циклоалкильного кольца; причем необязательные один или несколько заместителей у каждого R1-3 выбирают из группы, состоящей из гидрокси, алкокси, линейного или разветвленного алк(ен)ила, арилокси, галогена, карбоновой кислоты, сложного эфира, карбокси, нитрила и амидо, при условии, что если и R1, и R2, оба представляют собой метильные группы, то R3 не является водородом.
Изобретение относится к способу получения триоксана, основанному на реагировании концентрированных водных растворов формальдегида в присутствии вольфрамовых гетерополикислот, в том числе с добавками неорганических солей, при котором из отработанной реакционной массы регенерируют гетерополикислоту, содержащийся в отработанной реакционной массе формальдегид удаляют отгонкой с использованием воды в качестве экстрактивного агента, полученный водный раствор гетерополикислоты упаривают и после удаления формальдегида добавляют кислоту, которую выбирают из следующего ряда: азотная кислота, серная кислота, соляная кислота, фосфорная кислота, катионит, затем добавляют экстрагент, в качестве которого используют органический растворитель из группы: бутанол-1, бутанол-2, пентанол-1, пентанол-2, циклогексанол, октанол-1, деканол-1, 4-метил-2-пентанон, бутиловый эфир, бензол, нитробензол, этилацетат или их смеси, полученный экстракт упаривают до первоначального объема реакционной массы, затем переводят гетерополикислоту в водную фазу, проводя процесс азеотропной отгонки экстрагента с использованием воды в качестве азеотропообразующего агента, водный раствор гетерополикислоты подвергают экстрактивной ректификации с использованием формальдегида (50-60 мас.% водный раствор) в качестве экстрактивного агента, при этом в кубе колонны получают раствор гетерополикислоты, воды и формальдегида, пригодный для дальнейшего синтеза.

Изобретение относится к составам с циклическими пероксидами кетонов, использующимся в процессах (со)полимеризации и модификации (со)полимеров. .

Изобретение относится к пероксидным композициям, предназначенным для использования в способах полимеризации и модификации (со)полимеров. .

Изобретение относится к области медицины и касается применения циклического эфира (R)-3-гидроксибутирата формулы (1) для лечения болезненных состояний, опосредованных свободными радикалами, токсическими агентами, такими как пептиды и белки, и генетическими дефектами, вредными для метаболизма клетки, устойчивостью к инсулину или другими дефектами обмена глюкозы или состояниями, вызывающими дефект, ишемии, травмы головы, и/или повышения эффективности работы клетки.

Изобретение относится к композиции, содержащей циклический пероксид кетона и флегматизатор, имеющий точку 95% выкипания в пределах 220-265oС, наиболее предпочтительно 235-250oС.
Наверх