Способ получения высокодисперсных порошков меди



Способ получения высокодисперсных порошков меди

 


Владельцы патента RU 2429107:

Российская Федерация, от имени которой выступает государственная корпорация по атомной энергии "РОСАТОМ" (RU)
Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации - Институт теоретической и экспериментальной физики" (RU)

Изобретение относится к способу получения высокодисперсных порошков меди. Способ включает растворение материала анода из меди, погруженного в электролит, содержащий ионы меди, их восстановление с получением порошка меди. При этом используют электролит, содержащий ионы меди с концентрацией, обеспечивающей максимальную электропроводность, над поверхностью электролита на расстоянии, достаточном для зажигания разряда между катодом и электролитом, располагают катод. Восстановление ионов меди осуществляют в электролите электронами, поступающими с катода, при зажигании разряда между катодом и электролитом. Техническим результатом является повышение эффективности процесса. 1 ил.

 

Данное изобретение относится к области нанотехнологий. В последние годы высокодисперсным и ультрадисперсным порошкам и способам их получения уделяется большое внимание в связи с бурным развитием нанотехнологий. Ожидается на их основе получение материалов с уникальными механическими, электрическими, магнитными, оптическими и другими свойствами [1]. Основными областями потребления высокодисперсных (ультрадисперсных) материалов в настоящее время являются: электроника, производство катализаторов и сорбентов, оптоэлектроника и магнитные изделия, фармакология и медицина.

Существует принципиальная возможность получения в высокодисперсном (ультрадисперсном) состоянии самых разнообразных материалов - чистых металлов, интерметаллических соединений, окислов, гидридов и др. Для этих целей используют различные методы: испарение в вакууме и инертном газе, химическое и электрохимическое осаждение из растворов, плазмохимический синтез, распыление и в разряде [2, 3].

Нами разрабатывался способ выделения из раствора металлической фазы под действием электрического разряда.

Известен электрохимический способ получения высокодисперсных порошков меди, включающий растворение материала анода из меди, погруженного в электролит, содержащий ионы меди, с получением в нем ионов меди, восстановлением их на катоде с получением порошка меди [4]. В данном способе анод и катод погружены в электролит.

Предлагаемый способ предназначен для решения технической задачи получения высокодисперсных порошков меди, включающий растворение материала анода из меди, погруженного в электролит, содержащий ионы меди, с получением в нем ионов меди, восстановление их с получением порошка меди, отличающийся тем, что используют электролит, имеющий максимальную электропроводность, а над поверхностью электролита на расстоянии, достаточном для зажигания разряда между катодом и электролитом, располагают катод, восстановление ионов меди осуществляют в электролите электронами, поступающими с катода, при зажигании разряда между катодом и электролитом.

Сущность предлагаемого способа состоит в восстановлении в объеме электролита ионов меди электронами, поступающими в электролит с электрода, расположенного над поверхностью электролита и являющегося катодом. Анод располагается в электролите и выполняется из того же материала, что и растворенный металл. Таким образом, на аноде идет растворение металла

Me0 - e- → Me+,

а в объеме электролита ионы металла восстанавливаются до металла

Ме+ + е- → Ме0

Созданная на этом принципе установка использовалась для получения высокодисперсных порошков меди. Анод был изготовлен из электролитической меди, а электролитом служил водный раствор азотнокислой меди. Катод также изготавливался из меди. Если не принимать специальных мер, то после восстановления медь реагирует с водой с образованием гидроокиси меди Cu(OH)2 и выпадает в осадок в виде голубой студенистой массы. При нагревании гидрооксид превращается в оксид меди черного цвета CuO.

Оксид меди обладает окислительными свойствами. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород в воду и восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементном анализе органических веществ для определения содержания в них углерода и водорода.

Размер получаемых частиц определялся в Менделеевском институте методом Релеевского рассеивания. В осадке наблюдался спектр частиц со средним размером ≈4 мкм. К моменту измерения частицы успевали коагулировать, и приведенная цифра относится к размеру агрегатов, составленных из начальных ультрадисперсных частиц.

Параметры установки

Эксперименты проводились в установке, выполненной из стекла объемом 1,5 литра. Анод изготавливался из листовой электролитической меди размером 10×1 см и толщиной 0,2 мм, катод - из медной проволоки диаметром 3 мм. Концентрация CuNO3 составляла 0,05÷0,1 N.

Разряд зажигался при напряжении 400÷500 В, зазор между раствором и катодом регулировался. Для зажигания разряда использовался барботаж.

Источником тока служил трансформатор типа ОС-2/0,5, выходная обмотка которого была перемотана на напряжение 1000 В. Выпрямитель выполнялся по мостовой схеме на диодах Д248 Б по 3 штуки в каждом плече. Диоды шунтировались сопротивлениями МАТ-2 на 75 кΩ. Эксперименты проводились с током 2÷4 А. В стационарных условиях количество выделившегося металла q за время τ связано с током I следующим соотношением:

,

где А - г-атом вещества, a z - заряд иона.

Для меди A=63 г/моль, а z=1.

Выделение меди сопровождается выделением тепла, которое требуется отводить.

График распределения частиц по размерам изображен на чертеже.

Следует отметить, что предлагаемый способ пригоден не только для получения порошков меди, но и других металлов, в том числе и не реагирующих с водой. Медь в данном случае взята лишь для примера. Кроме того, электролитом могут быть любые электропроводящие среды, в которых растворяется материал анода. Суть предложения заключается в том, что ионы металла в электролите восстанавливаются электронами, поступающими в электролит с катода, расположенного вне электролита (в нашем случае в газовой фазе над его поверхностью), а анод выполнен из того же материала, что и растворенный металл.

Литература

1. Доклады по нанотехнологиям на XVIII Менделеевском съезде по общей и прикладной химии (раздел «Химия материалов, наноструктуры и нанотехнологии»), Москва, 23-28 сентября, 2008 г.

2. И.Д.Морохов, Л.И.Трусов, С.П.Чижик. «Ультрадисперсные металлические среды». Москва, Атомиздат, 1977.

3. А.Ф.Гайсин, И.М.Нуриев, А.З.Гумеров. «Способ получения металлического порошка (варианты)». RU 2332280, 27.08.2008.

4. Томилов А.П. «Прикладная электрохимия». М.: Химия, 1984, с.429, 430.

Способ получения высокодисперсных порошков меди, включающий растворение материала анода из меди, погруженного в электролит, содержащий ионы меди, их восстановление с получением порошка меди, отличающийся тем, что используют электролит, содержащий ионы меди с концентрацией, обеспечивающей максимальную электропроводность, над поверхностью электролита на расстоянии, достаточном для зажигания разряда между катодом и электролитом, располагают катод, а восстановление ионов меди осуществляют в электролите электронами, поступающими с катода, при зажигании разряда между катодом и электролитом.



 

Похожие патенты:

Изобретение относится к производству микроволокнистых материалов, используемых для очистки газов. .

Изобретение относится к способам получения катализаторов топливных элементов. .

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, и может использоваться в технологиях по изготовлению омических контактных систем к фотоэлектрическим преобразователям (ФЭП) с высокими эксплуатационными характеристиками, и, в частности, изобретение относится к формированию контактов к слоям GaAs n-типа проводимости, являющимся фронтальными слоями ряда структур концентраторных ФЭП, способных эффективно преобразовывать падающее излучение мощностью 100-200 Вт/см2.

Изобретение относится к сканирующей зондовой микроскопии, а именно к устройствам, обеспечивающим управление сканирующими зондовыми микроскопами. .

Изобретение относится к области сканирующей зондовой микроскопии, преимущественно атомно-силовой микроскопии, и может быть использовано для измерений размеров нанообъектов и рельефа поверхностей, имеющих перепад высот наноразмера.

Изобретение относится к области нанесения каталитических оксидных покрытий и может быть использовано при изготовлении электродных материалов для комплексной очистки воды и стоков, для производства хлора и хлорсодержащих соединений.

Изобретение относится к получению нанопорошков металлического кобальта, в частности его структурированных фрактальных агломератов, имеющих широкий спектр областей применения в виде добавок, существенно влияющих на свойства материалов, в которых они применяются.

Изобретение относится к области машиностроительной керамики, в частности к керамоматричному композиционному материалу на основе карбида кремния, упрочненного углеродными волокнами.
Изобретение относится к технологии и средствам обработки воды, а более конкретно к обеззараживанию питьевой воды посредством насыщения наночастицами биоцидного действия.

Изобретение относится к способу получения наночастиц токопроводящих материалов. .

Изобретение относится к плазмохимической промышленности, в том числе к плазмохимическому синтезу с использованием индукционных разрядов трансформаторного типа низкого давления.

Изобретение относится к способам и устройствам получения частиц нанометрового размера для создания сенсорных, электронных и оптоэлектронных приборов и высокоселективных твердотельных катализаторов.

Изобретение относится к плазмохимическому синтезу с применением плазмотрона трансформаторного типа для получения высококачественных нанопорошков широкого ряда веществ.

Изобретение относится к импульсным способам формирования активного корочкового слоя прямопоточного трубчатого катализатора гетерогенных химических реакций. .
Изобретение относится к порошковой металлургии, в частности к получению порошковых материалов с частицами размером менее 0,2 мкм, используемых для производства металлокерамики, композиционных материалов, а также в качестве горючего, термитных и пиротехнических составов.

Изобретение относится к области получения металлических порошков и может быть использовано для создания материалов с высокой теплопроводностью и высоким электрическим сопротивлением.

Изобретение относится к области получения металлических порошков для создания композиционных материалов, в том числе материалов с высокой теплопроводностью и высоким электрическим сопротивлением.
Изобретение относится к порошковой металлургии, в частности получению электролитических порошков. .

Изобретение относится к технологиям производства металлических порошков, имеющих размер фракции, выражаемый в наноединицах
Наверх