Способ получения водорода

Изобретение относится к области химии, в частности к способу получения водорода. В реактор между электродами периодически подают воду и алюминиевый порошок. Обеспечивают контакт полученной алюмоводной суспензии с электродами, затем периодически подают на электроды переменный ток высокой частоты напряжением 3 кВ. Ток проходит по слою металлического порошка, образуя в точках неполного касания искровой высокочастотный разряд, диспергируют порошок, образуя наночастицы алюминия, которые взаимодействуя с водой образуют окислы алюминия и газообразный водород. Изобретение направлено на повышение производительности и снижение энергозатрат.1 ил.

 

Изобретение относится к химической промышленности, в частности к способам получения газообразного водорода.

Известен способ получения водорода, включающий взаимодействие водяного пара с элементарным железом и/или с его низшим окислом в кипящем слое при 500-650°С, давлении 0,1-0,4 МПа, регенерацию образующихся окислов железа, контактированием их с твердым углеродосодержащим материалом при 800-1100°C с получением газов регенерации и восстановленных окислов железа и возврат последних на стадию взаимодействия, газы регенерации возвращают на стадию регенерации, а окислы железа на стадии регенерации используют с размером частиц 50·10-6-140·10-6 м [патент РФ №1125186, МПК С01В 3/10 опубл. 23.11.1984 г. БИ №43 «Способ получения водорода», авторы Лебедев В.В. и др.].

Недостатком способа является сложность процесса, низкая производительность и большие энергозатраты.

Известен способ получения водорода путем конверсии в реакторе водяного пара в среде раскаленного железа до окислов железа и газообразного водорода, в котором используют реактор, состоящий из рубашки охлаждения и высоковольтного разрядника с двумя электродами, один из которых изготовлен из технического железа, в баке кипятят дистиллированную воду, образуя насыщенный пар, его подают в рубашку охлаждения реактора, образуя перегретый пар, на высоковольтный разрядник подают переменный ток напряжением 3,6 кВ, одновременно через форсунку в разрядный промежуток вводят перегретый пар, а образовавшиеся окислы железа при помощи вибрации сбрасывают в сборную емкость; влажный водород выпускают из реактора в конденсатор, охлаждаемый водой из системы водоснабжения, конденсат сбрасывают, после этого предварительно осушенный водород подвергают окончательной осушке в регенерируемых силикагелевых патронах, затем водород через микропористый фильтр раздают потребителям в интерметаллидных компрематорах, которые при десорбции водорода обеспечивают его чистоту до 99,99 об.% [патент РФ №2191742, МПК С01В 3/00, С01В 3/10 опубл. 27.10.2002 г. БИ №30 «Способ получения водорода», авторы Адамович Б.А. и др.].

Недостатком способа является низкая производительность и большие энергозатраты.

Данное техническое решение выбрано в качестве прототипа.

Техническим результатом является повышение производительности, снижение энергозатрат.

Технический результат достигается тем, что в способе получения водорода в реактор между электродами периодически подают воду и алюминиевый порошок, образуя алюмоводную суспензию, и обеспечивают контакт алюмоводной суспензии с электродами, затем периодически подают на электроды переменный ток высокой частоты напряжением 3 кВ, ток проходит по слою металлического порошка, образуя в точках неполного касания искровой высокочастотный разряд, диспергируют порошок, образуя наночастицы алюминия, которые, взаимодействуя с водой, образуют окислы алюминия и газообразный водород.

Реакцию взаимодействия алюминиевого нанопорошка с водой производят на поверхности алюминиевого нанопорошка при температуре 600-700°С. Подача на алюмоводную суспензию переменного тока высокой частоты напряжением 3 кВ обеспечивает прохождение тока по слою металлического порошка и образует в точках неполного касания искровой высокочастотный разряд, который диспергирует алюминиевый порошок до наноразмерного состояния 70-120 нм и нагревает его до температуры плавления. Высокотемпературные наночастицы алюминиевого порошка позволяют быстро провести реакцию окисления алюминия в суспензии.

На чертеже представлена схема получения водорода.

Реактор 1 состоит из рубашки охлаждения 2, двух железных электродов 3 и 4, диспергируемого алюминиевого порошка 5, магистрали выхода водорода 6, магистрали подачи алюминиевого порошка 7, магистрали выхода продуктов реакции 8, высоковольтного источника питания 9.

В нижнюю часть реактора 1 подают воду и через магистраль подачи алюминиевого порошка 7 подают алюминиевый порошок, например марки АСД-6. Таким образом, в реакторе образуют алюмоводную суспензию. При этом происходит механический контакт алюмоводной суспензии с электродами 3 и 4.

От высоковольтного источника питания 9 подают на электроды переменный ток высокой частоты напряжением 3 кВ. Ток проходит по слою металлического порошка, образуя в точках неполного касания искровой высокочастотный разряд. При этом происходит диспергирование алюминиевого порошка с образованием наночастиц алюминия размером 70-120 нм, которые взаимодействуя с водой образуют оксиды алюминия и газообразный водород.

При этом реакция окисления алюминиевых наночастиц идет по двум уравнениям:

2Аl+2Н2O=2АlOOН+Н2

2Аl+6Н2O=2Аl(ОН)3+3Н2

Окислы алюминия выводят из реактора по магистрали выхода продуктов реакции 8, а влажный водород выводят из реактора по магистрали выхода водорода 6.

Предлагаемый способ позволяет увеличить выход водорода, повысить производительность получения водорода в несколько порядков и снизить энергозатраты на его получение в 3 раза.

Способ получения водорода в реакторе с электродами, отличающийся тем, что в реактор между электродами периодически подают воду и алюминиевый порошок, образуя алюмоводную суспензию, и обеспечивают контакт алюмоводной суспензии с электродами, затем периодически подают на электроды переменный ток высокой частоты напряжением 3 кВ, ток проходит по слою металлического порошка, образуя в точках неполного касания искровой высокочастотный разряд, диспергируют порошок, образуя наночастицы алюминия, которые, взаимодействуя с водой, образуют окислы алюминия и газообразный водород.



 

Похожие патенты:

Изобретение относится к области химии. .
Изобретение относится к катализаторам, способу его получения и способу получения синтез-газа путем каталитического превращения углеводородов в присутствии газов, содержащих кислород или воздух.

Изобретение относится к области химии. .

Изобретение относится к области химии. .

Изобретение относится к области химии и может быть использовано в производстве водородного топлива. .

Изобретение относится к энергетике и может быть использовано для получения тепловой энергии:- автономно для подачи перегретого пара на промышленные и бытовые теплообменники, турбоустановки, турбогенераторы и другие потребители перегретого водяного пара;- в ядерных энергетических установках с реакторами типа ВВЭР как для непосредственного перегрева насыщенного пара, так и для смешения насыщенного пара с перегретым паром с целью повышения коэффициента полезного действия, увеличения мощности, сокращения расхода охлаждающей воды, понижение влажности пара перед последними ступенями турбин, что позволит заменить турбины влажного пара на турбины перегретого пара для атомных электрических станций и транспортных установок, например, судовых и корабельных с повышением коэффициента полезного действия, мощности, надежности и безопасности эксплуатации;- по мощности и своим весогабаритным характеристикам энергетическая установка может быть использована в транспортных энергоустановках железнодорожного типа;- при заводском блочном исполнении агрегатов установки она может доставляться на стройплощадку посредством: автомобильного транспорта, например трейлер с тягачом типа «Faun», воздушным транспортом транспортным самолетом типа «Руслан», экранопланом, водным транспортом речным и морским.

Изобретение относится к способу и устройству для выделения диоксида углерода и сульфида водорода из синтетического газа для превращения источника топлива в водород.

Изобретение относится к способу генерирования водяного пара по меньшей мере двух типов, обладающих разной чистотой, в процессах реформинга с водяным паром и к устройству для осуществления этого способа.

Изобретение относится к способу импульсного потока для обессеривания циркулирующего водорода и к устройству для осуществления этого способа

Изобретение относится к способу получения продукта синтеза Фишера-Тропша из газообразной смеси углеводородов, содержащей метан, этан и, необязательно, углеводороды с более высоким числом атомов углерода, в которой содержание метана составляет по меньшей мере 60 об.%, путем осуществления следующих стадий: (а) адиабатический предварительный риформинг углеводородной смеси в присутствии катализатора риформинга, содержащего оксидный материал носителя и металл, который выбирают из группы, состоящей из Pt, Ni, Ru, Ir, Pd и Со, с целью превращения этана и необязательных углеводородов с более высоким числом атомов углерода в метан, диоксид углерода и водород, (b) нагревание газообразной смеси, полученной на стадии (а), до температуры выше, чем 650°С, (с) осуществление некаталитического неполного окисления путем введения в контакт нагретой смеси со стадии (b) с источником кислорода в реакторной горелке, с образованием выходящего из реактора потока, имеющего температуру между 1100 и 1500°С, (d) осуществление синтеза Фишера-Тропша с использованием в качестве сырья газа, содержащего водород и монооксид углерода, который получен на стадии (с) и (е) где продукт синтеза, полученный на стадии (d), разделяют на относительно легкий поток и относительно тяжелый поток, причем относительно тяжелый поток содержит продукт синтеза Фишера-Тропша, а относительно легкий поток содержит непревращенный синтез-газ, инертные вещества, диоксид углерода и C1 -С3 углеводороды, и где первую часть легкого потока рециркулируют на стадию (а) для того, чтобы подвергнуть ее предварительному риформингу, и где вторую часть легкого потока рециркулируют в реакторную горелку стадии (с) для того, чтобы подвергнуть ее неполному окислению, и где температуру на стадии (а) регулируют, устанавливая количество легкого потока, которое рециркулируют на стадию (а)

Изобретение относится к области химии и может быть использовано для разделения газов

Изобретение относится к способу пуска системы синтеза жидкого топлива, имеющей реактор десульфуризации, который производит гидрирование и десульфуризацию углеводородного сырьевого материала, риформинг-аппарат, который преобразует углеводородный сырьевой материал для получения синтез-газа, включающего газообразный монооксид углерода и газообразный водород в качестве основных компонентов, реактор Фишера-Тропша, который синтезирует жидкие углеводороды из газообразного монооксида углерода и газообразного водорода, содержащихся в синтез-газе, и реактор гидрирования, который производит гидрирование жидких углеводородов, синтезированных в реакторе Фишера-Тропша, при котором: отделяют часть газообразного водорода, содержащегося в синтез-газе, полученном в риформинг-аппарате, от синтез-газа при нормальном функционировании системы синтеза жидкого топлива; хранят часть отделенного газообразного водорода; и подают газообразный водород, накопленный в устройстве для хранения водорода, при запуске системы синтеза жидкого топлива, сначала в реактор гидрирования, перед пуском риформинг-аппарата, а затем в реактор десульфуризации, когда риформинг-аппарат запускается

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии метанола с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов различного назначения

Изобретение относится к области химии и может быть использовано для получения водорода и серы

Изобретение относится к области химии и может быть использовано для получения водорода и серы

Изобретение относится к области химии и может быть использовано при получении водорода
Изобретение относится к технологии приготовления катализаторов для конверсии углеводородов и может быть использовано в химической промышленности, например, для получения технического водорода из природного газа и технологических газов, необходимых в синтезе аммиака и метанола

Изобретение относится к катализаторам получения синтез-газа
Наверх