Новые депо-формы зидовудина и ламивудина на основе производных фосфоновых кислот

Изобретение относится к динуклеозидным эфирам фосфоновых кислот, которые могут быть использованы как антивирусные агенты формулы:

где Azt - остаток 3'-азидо-3'-дезокситимидина,

3ТС - остаток 2',3'-дидезокси-3'-тиацитидина,

R = электронно-акцепторная группа, например СlСН2-, CH3C(O)CH2-, H2NCO, PhCH2CH2HNCO-,

PhOCH2, СН3ОСН2-, N3CH2-.

Технический результат - получение новых антивирусных агентов. 2 табл.

 

Изобретение относится к области молекулярной биологии, вирусологии и медицины, а именно к применению новых производных нуклеозидов, а именно, динуклеозидных эфиров фосфоновых кислот для подавления репродукции вирусов.

В настоящее время в медицинской практике используется целый ряд соединений, обладающих противовирусной активностью в отношении ВИЧ. Среди них различают нуклеозидные и ненуклеозидные ингибиторы. Среди производных нуклеозидов наиболее часто применяются 3'-азидо-3'-дезокситимидин (АЗТ, Зидовудин®) и 2',3'-дидезокси-3'-тиацитидин (3ТС, Lamivudine®) [De Clercq, Е., 2002. New development in anti-HIV chemotherapy. Biochim. Biophys. Acta, 1587 258-275].

Механизм действия указанных соединений состоит в том, что после проникновения в инфицированные клетки они подвергаются трифосфорилированию и специфично блокируют синтез ДНК, катализируемый обратной транскриптазой ВИЧ. Высокая изменчивость ВИЧ приводит к быстрому возникновению резистентных штаммов вируса [Groschel, В., Cinatl, J.H., and Cinatl J. Jr., 1997. Viral and cellular factors for resistance against antiretroviral agents. Intervirology, 40, 400-407; Antonelli, G, Turriziani, O., Verri, A., Narciso, P., Ferri, F., D'Offizi, G., Dianzini, F., 1996. Long-term exposure to zidovudine affects in vitro and in vivo the efficiency of thymidine kinase. AIDS Res. Hum. Retrovir., 12, 223-228], и, следовательно, к необходимости смены препарата. К тому же из-за низкой эффективности внутриклеточных превращений используемые препараты требуют высоких доз применения, что вызывает появление выраженных токсических эффектов.

Так, например, следствиями токсичности АЗТ являются подавление деятельности клеток спинного мозга, нарушения функции печени и миопатия [Chariot, P., Drogou, 1, De Lacroix-Szmania, I., Eliezer-Vanerot, M.C., Chazaud, В., Lombes, A., Schaeffer, A., and Zafrani, E.S., 1999. Zidovudine-induced mitochondrial disorder with massive liver steanosis, myopathy, lactic acidosis, and mitochondial DNA depletion. J. Hepatol. 30, 156-160; Kellam, P., Boucher, C.A., and Larder, B.A., 1992. Fifth mutations in HIV reverse transcriptase contributes to the development of high level resistance to zidovudine. Proc. Natl. Acad. Sci. U.S.A, 89, 1934-1938; Ren, J., Esnouf, R.M., Hopkins, A.L., Jones, E.Y., Kirby, I, Keeling, J., Ross, C.K., Larder, B.A., Stuart, D.I., Stammers, D.K., 1998. 3'-Azido-3'-deoxythymidine drug resistance mutations in HIV-1 reverse transcriptase can induce long-range conformational changes. Proc. Natl. Acad. Sci. U.S.A, 95, 9518-9523]. Быстрое выведение АЗТ из организма требует частого приема препарата. Кроме того, при длительном применении АЗТ достаточно быстро формируются резистентные штаммы вируса и лечение теряет эффективность. Другие антивирусные препараты нуклеозидной природы обладают сходными побочными эффектами. Несмотря на все вышеперечисленные недостатки, АЗТ по-прежнему остается наиболее широко применяемым анти-ВИЧ препаратом.

Одним из способов улучшения фармакологических свойств антивирусных агентов является создание их депо-форм (латентных форм), то есть таких производных, которые после попадания в организм подвергаются химическим или ферментативным биотрансформациям, высвобождая активное соединение. В настоящее время описаны различные депо-формы нуклеозидных антивирусных препаратов [Parang К., Weibe L.I., Knaus Е.Е. // Current Medical Chemistry. 2000. V.7. P.995-1039.]. В частности Н-фосфонат АЗТ (Никавир®), одобренный в России для терапии СПИД, менее токсичен, чем АЗТ [Intracellular metabolism and pharmacokinetics of 5'-hydrohenphosphonate of 3'-azido-2',3'-dideoxythymidine, a prodrug of 3'-azido-2',3'-dideoxythymidine. Antiviral Research 63 (2004), 107-113]. По данным фармакокинетических исследований, клинические преимущества Никавира объясняются более медленным и плавным нарастанием концентрации АЗТ в крови, чем при приеме собственно АЗТ; при этом Смакс АЗТ из Никавира<Смакс АЗТ из Зидовудина, а Т1/2 АЗТ из Никавира>T1/2 АЗТ из Зидовудина [Y. Skoblov et al. / Antiviral Research 63 (2004) 107-113]. Тем не менее, токсичность Никавира остается достаточно высокой. Другим недостатком является возникновение резистентности к Никавиру.

Еще один путь повышения эффективности анти-ВИЧ терапии - это использование комбинации (или коктейля) противовирусных препаратов. Наиболее известный из «комбинированных» препаратов - это комбивир, таблетки которого в качестве активного вещества содержат 150 мг ламивудина и 300 мг зидовудина®. Ламивудин является синергистом зидовудина в отношении угнетения репликации ВИЧ в культуре клеток. Клинические наблюдения in vivo показывают, что комбинированная терапия ламивудином и зидовудином замедляет развитие резистентности к зидовудину у пациентов, которые ранее не получали антиретровирусную терапию.

Данным изобретением решена задача создания низко токсичных динуклеозидных эфиров фосфоновых кислот, обладающих способностью постепенно высвобождать активные нуклеозиды в организме. Это позволит поддерживать постоянную внутриклеточную концентрацию двух препаратов в течение длительного времени и таким образом снизить разовую дозу препарата и/или частоту приема и уменьшить побочные эффекты.

Первые соединения подобной структуры, а именно бис-азидодезоксити-мидинметилфосфонат и бис-дидезоксицитидинметилфосфонат, были синтезированы группой Имбаха в 1990 году [Puech F, Gosselin G, Balzarini J, Good SS, Rideout JL, De Clercq E, Imbach JL. Synthesis and biological evaluation of dinuc-leoside methylphosphonates of 3'-azido-3'-deoxythymidine and 2',3'-dideoxycytidine. Antiviral Res. 1990 Jul; 14(1): 11-23], однако эти метилфосфонаты оказались слишком стабильными и не гидролизовались ни в клеточных культурах, ни в организмах животных. В 1995 году Крис Меер и др. впервые показали, что ди-нуклеозид-альфа-гидроксифосфонаты, несущие два одинаковых нуклеозида, могут выступать в качестве эффективной депо-формы [Meier С, Habel L, Laux W, De Clercq E, Balzarini J. Homo dinucleoside-ct-hydroxyphosphonate diesters as prodrugs of the antiviral nucleoside analogues 2',3'-dideoxythymidine and 3'-azido-2',3'-dideoxythymidine. Nucleosides&Nucleotides, 1995; 14(3-5):759-762]. Эти два примера наглядно показывают важность структуры заместителя R.

Задача решена созданием соединений общей формулы:

где Azt - остаток 3'-азидо-3'-дезокситимидина, 3ТС - остаток 2',3'-дидезокси-3'-тиацитидина, R=электронно-акцепторная группа, например С1СН2-, CH3C(O)CH2-, H2NCO-, PhCH2CH2HNCO-, , PhOCH2-, СН3ОСН2- или N3CH2-.

Новые соединения подавляют репродукцию вируса иммунодефицита человека в культуре перевиваемых лимфоцитов МТ-4, обеспечивают защиту клеток от цитопатогенного действия вируса и не проявляют токсичности в отношении хозяйских клеток вплоть до крайне высоких концентраций (табл.1). Из полученных экспериментальных данных видно, что исследуемые соединения, не оказывая токсического действия на клетки в эффективных концентрациях (50%-ные токсические дозы на 2-4 порядка превышают 50%-ные ингибирующие дозы), в высокой степени подавляют репродукцию вируса иммунодефицита в культуре клеток МТ-4. Терапевтические индексы исследуемых соединений (IS), определяемые как отношение токсической дозы препарата к его эффективной дозе, сравнимы с таковыми для АЗТ и Никавира. Вирусологические тесты проведены в соответствии с описанными ранее протоколами.

Целевые фосфонаты получали по следующей схеме:

Ниже приведены конкретные примеры, раскрывающие сущность изобретения.

Пример 1

Общая методика синтеза фосфонатов (II)

К раствору фосфонатов (I), полученных по методу [Широкова Е.А., Ясько М.В., Хандажинская А.Л., Иванов А.В., Январев Д.В., Скоблов Ю.С., Проняева Т.Р., Федюк Н.В., Покровский А.Г., Куханова М.К. Новые производные 3'-азидо-3'-дезокситимидина и фосфономуравьиной кислоты, Биоорган. Химия, 2004, 30, №3, 273-280.] (0,2 ммоль) в пиридине (3 мл) добавляли соответствующий нуклеозид (0,4 ммоль), охлаждали до 0°С и прибавляли TPSC1 (0,6 ммоль). Реакционную массу перемешивали 16 ч при комнатной температуре. Растворитель удаляли в вакууме. Остаток хроматографировали на колонке (2×25 см) с силикагелем, элюировали в градиенте концентраций метанола в хлороформе (0→10%). Фракции, содержащие целевые продукты (II), упаривали досуха в вакууме.

5'-Хлорометилфосфоно-3'-азидо-3'-дезокситимидилил(5'-5')-L-2',3'-дидезокси-3'-тиацитидин (IIа). Получен с выходом 29%. 1Н-ЯМР (CD3OD): 7,89 (1Н, д, J 4,1, Н-6 (3ТС)), 7,48 (1Н, 2 с, Н-6 (Azt)), 6,32 (1Н, т, Н-1', J 5,3 (3ТС)), 6,15 (2Н, т, J 6,6 Н-1' (Azt)), 5,49 (1Н, уш.с, Н-4' (3ТС)), 4,54-4,41 (5Н, м, Н-3', Н-5' (Azt) и Н-5' (3ТС)), 4,07 (1Н, уш.с, Н-4' (Azt)), 3,95 и 3,92 (2Н, 2д, J 10,6 и 11,2, СН2Сl), 3,60 и 3,12 (2Н, 2 м, Н-2' (3ТС)), 2,55-2,34 (2Н, м, Н-2' (Azt)), 1,89 и 1,88 (3Н, 2 с, 5-СН3). 31Р-ЯМР (CD3OD): 23,5 с и 23,1 с.

5'-(2-Оксопропил)фосфоно-3'-азидо-3'-дезокситимидилил(5'-5')-L-2',3'-дидезокси-3'-тиацитидин (IIb). Получен с выходом 51%. 1Н-ЯМР (CD3OD): 7,87 (1H, д, J 4,1, Н-6 (3ТС)), 7,47 (2Н, 2 с, J 1,2, Н-6 (Azt)), 6,12 (2Н, 2 т, J 6,5, Н-1'(Azt)), 5,47 (1H, м, Н-4' (3ТС)), 4,52-4,40 (3Н, м, Н-3' (Azt) и Н-5' (3ТС)), 4,23 (2Н, м, Н-5' (Azt)), 3,99 (2Н, м, Н-4'), 3,58 (1Н, м, Н-2'а (3ТС), 3,42 (2Н, д, J 21,8, СН2-Р), 3,10 (2Н, 2 м, Н-2'b (3ТС)), 2,31-2,45 (4Н, м, Н-2'), 2,21 (3Н, с, СН3С(O)), 1,78 (6Н, с, 5-СН3). 31Р-ЯМР (DMSO-d6): 23,12 с и 23,34 с.

5'-Аминокарбонилфосфоно-3'-азидо-3'-дезокситимидилил(5'-5')-L-2',3'-дидезокси-3'-тиацитидин (IIc). Получен с выходом 27%. 1Н-ЯМР (CD3OD): 7,70 (1Н, м, Н-6 (3ТС)), 7,47 (1H, 2 с, Н-6 (Azt)), 6,23 (1Н, т, Н-1', J 5,6 (3ТС)), 6,13 (2Н, т, J 6,6, Н-1' (Azt)), 5,76 (1Н, д, J 7,4, Н-5' (3ТС)), 5,38 (1Н, м, Н-4' (3ТС)), 4,49 (1Н, м, Н-3' (Azt)), 4,38-4,30 (4Н, м, Н-5' (Azt) и Н-5' (3ТС)), 4,04 (1Н, уш.с, Н-4' (Azt)), 3,07-3,02 (2Н, м, Н-2' (3ТС)), 2,39-2,34 (2Н, м, Н-2' (Azt)), 1,78 (3Н, 2 с, 5-СН3). 31Р-ЯМР (CD3OD): 1,99 с и 2,31 с.

5'-Фенилэтиламинокарбонилфосфоно-3,-азидо-3'-дезокситимидилил(5,-5')-L-2',3'-дидезокси-3'-тиацитидин (IId). Получен с выходом 36%. 1Н-ЯМР (CD3OD): 7,85 (1Н, м, Н-6 (3ТС)), 7,46 (1Н, с, Н-6 (Azt)), 7,29-7,18 (5Н, м, Ph) 6,37 (1Н, т, J 5,3, Н-1' (3ТС)), 6,12 (1Н, т, J 6,5, Н-1' (Azt)), 5,94 (1Н, д, J 7,5, Н-5' (3ТС)), 5,47 (1Н, м, Н-4' (3ТС)), 4,45-4,31 (6Н, м, Н-3', Н-4' и Н-5' (Azt) и Н-5' (3ТС)), 4,04 (2Н, м, CH2N), 3,52 (1Н, м, Н-2'а (3ТС)), 3,15 (1Н, м, Н-2'b (3ТС)), 2,85 (2Н, т, J 7,2, СН2Ph, 2,45 (2Н, м, Н-2' (Azt)), 1,88 (3Н, с, 5-СН3 (Azt)). 31Р-ЯМР (CD3OD): 1,21 с и 1,28 с.

5'-Морфолинокарбонилфосфоно-3'-азидо-3'-дезокситимидилил(5'-5')-L-2',3'-дидезокси-3'-тиацитидин (IIе). Получен с выходом 47%. 1Н-ЯМР (CD3OD): 7,81 (1H, м, Н-6 (3ТС)),7,25 (1Н, 2 с, Н-6 (Azt)), 6,32 (1Н, т, J 5,3, Н-1' (3ТС)), 6,06 (1Н, т, J 6,6, Н-1' (Azt)), 5,76 (1H, м, Н-5 (3ТС)), 5,36 (1Н, м, Н-4' (3ТС)), 4,40 (1Н, м, Н-3' (Azt)), 4,38-4,30 (4Н, м, Н-5' (Azt) и Н-5' (3ТС)), 4,02, 3,96, 3,71, 3,65 (9Н, 4 м, морфолин и Н-4' (Azt)), 2,53-2,38 (2Н, м, Н-2'), 1,91 (3Н, с, 5-СН3). 31Р-ЯМР (CD3OD): 2,11 с и 1,96 с.

5'-Феноксиметилфосфоно-3'-азидо-3'-дезокситимидилил(5'-5')-L-2',3'-дидезокси-3'-тиацитидин (IIf). Получен с выходом 39%. 1Н-ЯМР (CD3OD): 7,84 и 7,82 (1Н, 2 д, J 5, Н-6 (3ТС)), 7,51 и 7,49 (1Н, 2 д, J 0,9, Н-6 (Azt)), 7,34-7,26 (2Н, м, o-PhO), 7,05-6,94 (3Н, м, m- и p-PhO), 6,32 и 6,31 (1Н, 2 т, J 6, Н-1' (3ТС)); 6,14 (1Н, т, J 7,5, Н-1' (Azt)), 5,86 и 5,85 (1Н, 2 д, Н-5), 5,44 (1Н, м, Н-4' (3ТС)), 4,54-4,41 (7Н, м, Н-3' (Azt), Н-5' (Azt), РСН2O и Н-5' (3ТС)), 4,08 (1Н, уш.с, Н-4' (Azt)), 3,48 и 3,12 (2Н, 2 м, Н-2' (3ТС)), 2,51-2,38 (2Н, м, Н-2' (Azt)), 1,83 и 1,81 (3Н, 2 д, 5-СН3 (Azt)). 31Р-ЯМР (CD3OD): 24,1 с и 23,4 с.

5'-Метоксиметилфосфоно-3,-азидо-3'-дезокситимидилил(5'-5')-L-2',3'-дидезокси-3'-тиацитидин (IIg). Получен с выходом 31%. 1Н-ЯМР (CD3OD): 7,84 (1H, м, Н-6 (3ТС)), 7,48 (1Н, с, Н-6 (Azt)), 6,35 (1Н, т, J 5,3, Н-1' (3ТС)), 6,14 (1Н, т, J 6,5, Н-1' (Azt)), 5,92 (1Н, д, J 7,5, Н-5 (3ТС)), 5,46 (1Н, м, Н-4' (3ТС)), 4,44-4,30 (5Н, м, Н-3' и Н-5' (Azt) и Н-5' (3ТС)), 4,27 (1Н, м, Н-4' (Azt)), 4,07 и 4,05 (2Н, 2д, J 8,7, СН2-Р), 3,50 (1Н, м, Н-2'а (3ТС)), 3,44 (3Н, d, J 0,9, CH3O), 3,14 (1H, м, Н-2'b (3ТС)), 2,47 (2Н, м, Н-2' (Azt)), 1,89 (3Н, с, 5-СН3 (Azt)). 31Р-ЯМР (CD3OD): 24,7 с и 24,1 с.

5'-Азидометилфосфоно-3'-азидо-3'-дезокситимидилил(5',5')-L-2',3'-дидезокси-3'-тиацитидин (IIh). Получен с выходом 65%. 1Н-ЯМР (CD3OD): 7,83 (1Н, м, Н-6 (3ТС)), 7,49 и 7,45 (1H, 2 с, J 1,2, H-6(Azt)), 6,34 (1Н, т, J 5,4, Н-1' (3ТС)), 6,13 и 6,07 (2Н, 2 т, J6,5, Н-1' (Azt)), 5,92 (1Н, д, J 7,5, Н-5 (3ТС)), 5,44 (1H, м, Н-4' (3ТС)), 4,35 (5Н, м, Н-3', Н-5' (Azt) и Н-5' (3ТС)), 4,06 (2Н, м, Н-4' (Azt)), 3,93 и 3,90 (2Н, 2д, J 11,8, СН2-Р), 3,50 и 3,15 (2Н, 2 м, Н-2' (3ТС)), 2,41 (2Н, м, H-2' (Azt)). 31Р-ЯМР (CD3OD): 25,3 с и 24,9 с.

Пример 2

Исследование ингибирования репродукции ВИЧ включает культивирование первично инфицированных лимфоидных клеток линии МТ-4 в присутствии исследуемых соединений, конечные концентрации которых в культуральной среде составляют 0,001-100 мкг/мл, на протяжении одного пассажа - в течение 4 суток.

Ингибирование репродукции ВИЧ в культуре чувствительных клеток определяют по снижению накопления вирусспецифического белка р24 (по данным иммуноферментного анализа), а также по увеличению жизнеспособности клеток в присутствии препарата по сравнению с контролем, определяемому на 4 сутки культивирования при окрашивании бромидом 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолия (МТТ).

Оценка цитотоксичности соединений

Цитотоксичность препарата оценивают путем добавления его разведений в бессывороточной среде RPMI-1640 к клеточной суспензии МТ-4, помещенной в лунки 96-луночного планшета ("Cel-Cult", UK), до конечных концентраций 0,001-100 мкг/мл (по три лунки на каждую дозу) с последующим культивированием при 37°С в течение 4 суток. Посевная концентрация составляет 0,5×106 клеточных частиц в миллилитре. Контролем служат клетки без добавления препарата, вместо которого вносят такое же количество бессывороточной среды. Жизнеспособность клеток подсчитывают на 4 сутки культивирования, пользуясь формазановым методом (прижизненным окрашиванием клеток МТТ). Токсичность различных доз препарата определяют по жизнеспособности клеток относительно контроля, по полученным результатам строят дозозависимую кривую и определяют концентрацию, на 50% снижающую жизнеспособность клеток (CD50). Исследуемые соединения не оказывают токсического действия на клетки МТ-4 в эффективных концентрациях. Следует также отметить, что 50%-ные токсичные дозы на 2-4 порядка превышают эффективные в отношении ВИЧ-1 дозы (табл. 1).

Влияние исследуемых соединений на репродукцию ВИЧ-1 в культуре клеток МТ-4 исследовано по известной методике.

Терапевтический индекс или индекс селективности (IS) считают как отношение 50%-ной токсической концентрации соединения к его 50%-ной эффективной дозе (результаты представлены в табл. 1). На основании этих количественных показателей ингибирования можно судить об эффективности противовирусного действия заявляемых соединений, заключающейся в высокой степени подавления репликации ВИЧ-1 в культуре клеток МТ-4, сравнимой с эффективностью Никавира.

Пример 3

Тестируемое соединение (10 мкг) добавляли к 1 мл крови собаки, стабилизированной гепарином. Инкубировали при 37°С в течение 6 часов. Пробы отбирали каждый час, центрифугировали (10 минут, 2000 об/мин), супернатант отделяли. Из супернатанта отбирали аликвоты (0,25 мл), добавляли оксетан (0,25 мкг как внутренний стандарт) и метанол (0,75 мл). Полученную смесь центрифугировали 3 минуты при 5000 об/мин. Супернатант отделяли и упаривали в токе воздуха при 40°С, к остатку добавляли воду (1 мл). Аликвоты (20 мкл) анализировали методом ВЭЖХ на жидкостном хроматографе Gynkotec, Германия; аналитическая колонка Ultrasphere ODC "Beckman" USA. Элюент: 6% ацетонитрил в 0,1% Н3РО4 (рН 2,1) в присутствии 0,15% триэтиламина. Детекция при λmax 265 нм, температура 30°С. Данные, полученные в результате анализа, приведены в табл. 2.

Таблица 1
Анти-ВИЧ активность препаратов в культуре клеток МТ-4, инфицированных ВИЧ-1 ГКВ-4046 (добавление препаратов после адсорбции вируса)
Соединение CD50, mM PD50, mМ По ингибированию накопления р24
ID50, mМ IS
>>2,6 <0,0258 0,258 >10016
>2,1 <0,0465 0,536 >3920
AZT 0,142 <0,0374 0,037 3838
Никавир 0,184 <0,0262 0,131 1405
Таблица 2
Данные по гидролизу заявляемых соединений в плазме крови собаки после добавления в 1 мл крови 10 мкг тестируемых соединений (продукты гидролиза АЗТ, 3ТС и соответствующие фосфонаты I)
соединение Т1/2 часы
IIа ~6
IIe 0,5
IIf >6
Никавир 3

Таким образом, показано, что исследуемые соединения обладают низкой токсичностью и способностью эффективно ингибировать репродукцию вируса иммунодефицита в культуре клеток МТ-4. Кроме того, заявляемые соединения способны генерировать смесь АЗТ и 3ТС в организме млекопитающих, обеспечивая плавное нарастание их концентраций в крови.

Динуклеозидные эфиры фосфоновых кислот, имеющие общую формулу

где Azt - остаток 3'-азидо-3'-дезокситимидина, 3ТС - остаток
2',3'-дидезокси-3'-тиацитидина, R = электронно-акцепторная группа, например СlСН2-, CH3C(O)CH2-, H2NCO-, PhCH2CH2HNCO-,
, PhOCH2-, СН3ОСН2-, N3CH2-.



 

Похожие патенты:

Изобретение относится к 5'-фосфорсодержащим производным 2',3'-дидезокси-3'-тиацитидина общей структурной формулы, приведенной ниже, где R=Н, NH2-C(O)-. .

Изобретение относится к комбинации, по меньшей мере, двух описанных здесь пролекарств. .
Изобретение относится к области биотехнологии, конкретно к получению нуклеозид-5'-трифосфатов, меченных фосфором-32 (фосфором-33) в альфа-положении, и может быть использовано для исследований в области молекулярной биологии, генетики и медицинской биохимии.

Изобретение относится к новым 5'-фосфонатам АЗТ общей формулы (I), обладающим анти-ВИЧ активностью и применению 5'-фосфонатов АЗТ в качестве активного компонента для приготовления лекарственных средств, обладающих анти-ВИЧ активностью.

Изобретение относится к новому соединению 5'-холинфосфат 3'-азидо-3'-дезокситимидину формулы I, обладающему противовирусной активностью. .

Изобретение относится к ациклическим нуклеозидфосфонатным производным формулы (1) где - одинарная или двойная связь; R1 - водород; R 2, R3 - водород или C1-С7 -алкил; R7 и R8 - водород или С1 -С4-алкил; R4 и R5 - водород или C1-C4-алкил, возможно замещенный одним или более галогенами, или -(СН2)m-OC(=О)-R 6, где m - целое число от 1 до 5 и R6 - С1-С7-алкил или 3-6-членный гетероцикл, содержащий 1 или 2 гетероатома, выбранные из группы, состоящей из N и О; Y - -О-, -CH(Z)-, =C(Z)-, -N(Z)-, где Z - водород, гидрокси или галоген или С1-С7-алкил; Q (см.

Изобретение относится к фосфорамидатам нуклеозидных аналогов, включающим 5'-фосфодиморфолидат 2',3'-дидезокси-2',3'-дидегидротимидина (формула I) и фосфорамидаты 3'-азидо-3'-дезокситимидина (формулы II и III), ингибирующим активность репродукции вируса иммунодефицита человека.

Изобретение относится к новым противовирусным производным 5'-Н-фосфоната 3'-азидо 3'-дезокситимидина общей формулы I где R представляет собой изопропил, неопентил или циклогексил, и содержащим их фармацевтическим композициям.

Изобретение относится к области молекулярной биологии, вирусологии и медицины и касается новых биологически активных соединений, а именно солей 5'-аминокарбонилфосфоната 3'-азидо-3'-дезокситимидина

Изобретение относится к новым соединениям общей формулы 1 или их стереоизомерам или фармацевтически приемлемым солям, обладающим свойствами ингибитора РНК полимеразы HCV NS5B, и к способам их получения. Соединения могут быть использованы для лечения и профилактики вирусных инфекций, включая гепатит C, возможно с дополнительными агентами, выбранными из ингибитора инозин-5-монофосфата дегидрогеназы, например Рибамидина, ингибитора протеазы гепатита С NS3, например Asunaprevir (BMS-650032), ингибитора протеазы гепатита С NS3/4A, например Sofosbuvir (TMC435), ингибитора РНК-полимеразы NS5A, например Daclatasvir (BMS-790052) или Ledipasvir (GS-5885). В общей формуле 1 R1 представляет собой C1-C4алкил; R2 и R3 представляют собой фтор, или R2 представляет собой фтор, а R3 представляет собой метил; один из R4 и R5 представляет собой водород, а другой из R4 и R5 представляет собой C1-C6ацил, необязательно замещенный α-аминоацил, выбранный из группы, включающей (диметиламино)ацетил, 1-трет-бутоксикарбониламино-2-метил-пропилкарбонил, 1-метилпирролидин-2-карбонил, 1-метилпиперидин-3-карбонил и 1-метилпиперидин-4-карбонил, R6 представляет собой водород, метил, метокси или галоген. 12 н. и 6 з.п. ф-лы, 1 табл., 14 пр.

Изобретение относится к соединениям для лечения гепатита С формулы I: его стереоизомерным формам, фармацевтически приемлемым солям или сольватам, где R1 представляет собой водород; R2 представляет собой водород, нафтил или фенил, необязательно замещенный 1, 2 или 3 заместителями, выбранными из галогена и C1-C6алкила; R3 и R4 представляют собой водород или C1-C6алкил; R5 представляет собой C1-C10алкил, необязательно замещенный C1-C6алкоксигруппой, C3-C7циклоалкил или бензил; R8 представляет собой водород. Предложены новые эффективные против гепатита С соединения и композиции на их основе. 4 н. и 8 з.п. ф-лы, 4 пр., 1 табл.

Изобретение относится к С3алкиловым эфирам (S)-2-{[(2R,3R,5R)-5-(4-амино-2-оксо-2Н-пиримидин-1-ил)-4,4-дифтор-3-гидрокси-тетрагидрофуран-2-илметокси]фенокси-фосфориламино}-пропионовой кислоты общей формулы 1 и их фармацевтически приемлемым солям. Соединения обладают свойствами нуклеозидных ингибиторов РНК-полимеразы HCV NS5B и могут найти применение для лечения и профилактики вирусных заболеваний, таких как гепатит C. В формуле 1 R1 представляют собой С1-С4алкил. Фармацевтическая композиция на основе соединения формулы 1 может дополнительно содержать ингибитор РНК-полимеразы NS5A, такой как Рибавирин, Рибамидин или гидрохлорид метилового эфира [(S)-1-((S)-2-{5-[4-(4-{2-[(S)-1-((S)-2-метоксикарбониламино-3-метил-бутирил)пирролидин-2-ил-3H-имидазол-4-ил]бута-1,3-диинил)фенил]-1H-имидазол-2-ил}пирролидин-1-карбонил)-2-метил-пропил]}-карбаминовой кислоты (AV-4025). 7 н. и 3 з.п. ф-лы, 1 табл., 12 пр.

Изобретение относится к соединениям, применимым в том числе в фармацевтических композициях для лечения заболеваний, вызванных вирусом денге, формул: где: R1 представляет собой арил, где указанный арил представляет собой фенил или нафтил, возможно замещенный одним-тремя заместителями, независимо выбранными из группы, состоящей из следующих: С1-6алкокси; R1a представляет собой С1-6алкил; R1b представляет собой -OR1a или -N(R1a)2; R2a и R2b (i) независимо выбраны из группы, состоящей из следующих: водород, С1-10алкил, -(CH2)mC(=O)R1b и арил-С1-3алкил; R3 представляет собой С1-10алкил или арил-С1-3алкил, где указанный арил представляет собой фенил; R4 представляет собой водород; R6 представляет собой А, В, С или D, где R8 представляет собой водород или С1-3алкил; R5 и R7 независимо выбраны из водорода, С(=О)С1-6алкила; m равен от 0 до 3; или его фармацевтически приемлемой соли. 4 н. и 15 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к противовирусным производным общей формулы I ,где R1 выбран из C1-6алкила; R2 выбран из атома галогена; R3 выбран из ОН, Н и C1-4алкокси; R4 выбран из Н, C1-6алкила и галогенсодержащего C1-6алкила; R5 выбран из C1-6алкила и галогенсодержащего C1-6алкила; R6 представляет собой фенил-Y-, где Y отсутствует или выбран из C1-6алкила, C2-6алкенила, C2-6алкинила, C2-6алкенил-(CO)-, C2-6алкинил-(СО)-, О, S, амино- и -N(C1-6алкил), фенил необязательно замещен группами, выбранными из C1-6алкила, атома галогена, нитро, C1-6алкокси, циано, С2-6алкенила, С2-6алкинила, C1-6ациламино, галогенсодержащего С1-6алкила, галогенсодержащего C1-6алкокси, амино, N(C1-6алкил)2 и С1-6алкил NHCO, или указанный фенил объединен с пяти- или шестичленным циклом с образованием бензо-пятичленного цикла или бензо-шестичленного цикла; гетероциклил-Y-, где Y отсутствует или выбран из C1-6алкила, C2-6алкенила, C2-6алкинила, C2-6алкенил-(CO)-, C2-6алкинил-(СО)-, О, S, амино- и -N(C1-6алкил), или гетероциклил вместе с присоединенной к нему группой Y образуют бициклический гетероцикл, при этом указанный гетероциклил необязательно замещен группами, выбранными из C1-6алкила, атома галогена, нитро, C1-6алкокси, циано, С2-6алкенила, С2-6алкинила, С1-6ациламино, галогенсодержащего C1-6алкила, галогенсодержащего C1-6алкокси, амино, N(C1-6алкил)2 и С1-6алкил NHCO; С1-6алкил-OC(O)-C2-6 алкенил- и C1-6алкил-O-C(O)-C2-6алкенил-С(О)-, где C1-6алкил необязательно замещен группами, выбранными из C1-6алкила, атома галогена, нитро, C1-6алкокси, циано, С2-6алкенила, С2-6алкинила, С1-6ациламино, галогенсодержащего C1-6алкила, галогенсодержащего C1-6алкокси, амино, N(C1-6алкил)2 и С1-6алкил NHCO; и R7 выбран из Н, атома галогена, C1-6алкила, галогенсодержащего C1-6алкила, C1-6алкокси, галогенсодержащего C1-6алкокси, NO2, CN, С1-6алкил-NH-CO-, гидрокси, моно-C1-6алкиламино, ди-C1-6алкиламино, С1-6алкил-S-, C2-6-алкенил-S, С2-6алкинил-S, С1-6алкил-SO-, С2-6алкенил-SO-, С2-6алкинил-SO-, С1-6алкил-SO2-, C2-6алкенил-SO2-, C2-6алкинил-SO2-, С1-6алкил-OSO2-, С2-6алкенил-OSO2-, C2-6алкинил-OSO2-. Предложено новое соединение, композиции на его основе для лечения вирусной инфекции семейства Flaviviridae, в частности инфекции вирусного гепатита С. 4 н. и 12 з.п. ф-лы, 43 пр., 4 табл.

Настоящее изобретение относится к новому пролекарству, представляющему собой циклобутил (S)-2-{[(2R,3R,4R,5R)-5-(2,4-диоксо-3,4-дигидро-2Н-пиримидин-1-ил)-4-фтор-3-гидрокси-4-метил-тетрагидрофуран-2-илметокси]-фенокси-фосфориламино}-пропаноат общей формулы 1, его стереоизомер, кристаллическую или поликристаллическую форму. Пролекарство обладает свойствами ингибитора NS5B HCV полимеразы и может быть использовано при лечении гепатита С. Стереоизомеры указанного соединения представляют собой циклобутил (S)-2-{(S)-[(2R,3R,4R,5R)-5-(3,4-дигидро-2,4-диоксо-2H-пиримидин-1-ил)-3-гидрокси-4-метил-4-фтор-тетрагидрофуран-2-илметокси]-фенокси-фосфориламино}-пропаноат формулы 1.1 или циклобутил (S)-2-{(R)-[(2R,3R,4R,5R)-5-(3,4-дигидро-2,4-диоксо-2H-пиримидин-1-ил)-3-гидрокси-4-метил-4-фтор-тетрагидрофуран-2-илметокси]-фенокси-фосфориламино}-пропаноат формулы 1.2. Поликристаллическая форма указанных соединений представляет собой смесь ромбической и моноклинной форм. Кристаллическая форма представляет собой ромбическую форму. Способ получения пролекарства формул 1, 1.1 и 1.2 заключается во взаимодействии циклобутил (S)-2-(пентафторфенилокси-фенокси-фосфориламино)-пропионата формулы 2 или циклобутил (S)-2-((S)-пентафторфенилокси-фенокси-фосфориламино)-пропионата формулы 2.1 или циклобутил (S)-2-((R)-пентафторфенилокси-фенокси-фосфориламино)-пропионата формулы 2.2 с трет-бутил (2R,3R,4R,5R)-5-(2,4-диоксо-3,4-дигидропиримидин-1(2H)-ил)-2-(гидроксиметил)-4-метил-4-фтор-тетрагидрофуран-3-ил карбонатом формулы 7 в присутствии алкилмагнийгалогенида с последующим снятием защитной группы. 5 н. и 5 з.п. ф-лы, 3 табл., 10 пр.

Изобретение относится к динуклеозидным эфирам фосфоновых кислот, которые могут быть использованы как антивирусные агенты формулы: где Azt - остаток 3'-азидо-3'-дезокситимидина, 3ТС - остаток 2',3'-дидезокси-3'-тиацитидина, R электронно-акцепторная группа, например СlСН 2-, CH3CCH2-, H2NCO, PhCH2CH2HNCO-, PhOCH2, СН3ОСН 2-, N3CH2-

Наверх