Способ получения радионуклида висмут-212



Способ получения радионуклида висмут-212
Способ получения радионуклида висмут-212

 


Владельцы патента RU 2430440:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)
Российская Федерация, от имени которой выступает Министерство образования и науки Российской Федерации (RU)

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. Раствор, содержащий смесь радионуклидов торий-228 и торий-229, а также дочерние продукты распада этих радионуклидов, барботируют газом, удаляя при этом из раствора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220. Направляют газ через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада по цепочке 220Rn→216Po→212Pb накапливают радионуклид свинец-212, который после выхода активности свинца-212 на насыщение десорбируют. Полученный раствор направляют на колонку с ионообменной смолой, с которой периодически смывают дочерний продукт распада радионуклид висмут-212. В качестве газа для барботирования используют воздух, и/или азот, и/или гелий, и/или аргон, и/или криптон, и/или ксенон. В качестве сорбционного устройства используют пустотелый объем, размеры которого обеспечивают время пребывания радона-220, достаточное для его полного распада в радионуклид свинец-212, или ловушку с активированным углем. Технический результат - уменьшение трудоемкости процесса, снижение содержания примесных радионуклидов. 3 з.п. ф-лы.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к технологии получения радионуклидов для ядерной медицины и может использоваться, в частности, для терапии онкологических заболеваний.

При терапии онкологических заболеваний все более широкое применение находят α-излучающие радионуклиды. Это связано с большой начальной энергией (5-8 МэВ) и коротким пробегом (десятки микрон) α-частиц в биологических тканях и, следовательно, высоким уровнем энерговыделения в области локализации распадающихся нуклидов. Носители α-излучающих радионуклидов (моноклональные антитела, пептиды) с высокой специфичностью позволяют доставлять их точно в опухолевый узел или метастатический очаг. Благодаря малым пробегам α-частиц возможно селективное воздействие излучения на патологические объекты с минимальной лучевой нагрузкой на окружающие здоровые ткани.

Настоящее изобретение может быть использовано для создания генераторов α-излучателей торий-228/свинец-212 (228Th/212Pb) и свинец-212/висмут-212 (212Pb/212Bi), конечные элементы цепочки распадов которых - радионуклиды свинец-212 и висмут-212 могут использоваться в составе медицинских радиофармпрепаратов.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Одним из наиболее перспективных направлений в ядерной медицине является радиоиммунотерапия с использованием α-излучателей. Применение короткоживущих α-излучающих радионуклидов для терапии онкологических заболеваний представляет интерес с радиобиологической точки зрения, поскольку является наиболее эффективным способом летального поражения опухолевых клеток благодаря короткому пробегу α-частиц в ткани и высокой ионизирующей способности.

В настоящее время ведется поиск α-излучателей, обладающих приемлемыми ядерно-физическими свойствами. Радионуклид висмут-212, образующийся при распаде изотопа уран-232, считается одним из наиболее перспективных для использования в терапии онкологических заболеваний.

Период полураспада висмута-212 составляет 60,6 мин, средняя энергия α-частиц 7,8 МэВ. При распаде висмута-212 образуются радионуклиды таллий-208 и полоний-212, которые ведут к стабильному нуклиду свинец-208. Пробег α-частиц в биологической ткани менее 100 мкм, что соответствует всего лишь нескольким диаметрам раковой клетки, а линейная передача энергии (ЛПЭ) достигает ~80 кэВ/мкм.

Начальный элемент цепочки уран-232 - искусственный изотоп урана, образование которого происходит в ядерном реакторе при облучении природного тория в результате следующих реакций взаимодействия нейтронов и гамма-квантов с нуклидом торий-232:

232Th(n,γ)233Th→233Pa(γ,n)232Pa→232U

232Th(n,2n)231Th→231Pa(n,γ)232Pa→232U

232Th(γ,n)231Th→231Pa(n,γ)232Pa→232U

В зависимости от условий облучения тория в реакторе равновесная концентрация урана-232 лежит в пределах 1000-6000 ppm [В.М.Мурогов, М.Ф.Троянов, А.Н.Шмелев. Использование тория в ядерных реакторах. М.: Энергоатомиздат, 1983].

При облучении тория в реакторе одновременно с ураном-232 происходит образование урана-233 по следующей реакции:

232Th(n,γ)→233Th→233Pa→233U

В результате α-распада урана-233 образуется торий-229, который, в свою очередь, после ряда распадов переходит в радионуклид висмут-213.

Висмут-212 является типичным генераторным радионуклидом и находит применение в радиоиммунотерапии, главным образом в виде меченных им моноклональных антител и других молекулярных носителей. Сегодня для получения висмута-212 используют две генераторные системы - 228Th/224Ra и 224Ra/212Bi. В первой из них радий-224 отделяется от тория-228 за счет анионообменного разделения этих радионуклидов из раствора азотной кислоты. Во втором генераторе с использованием катионообменных смол и минеральных кислот из радия-224 выделяют висмут-212 [R.W.Atcher, A.M.Friedman, J.J.Hines «An improved generator for the production of 212Pb and 212Bi from 224Ra». International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, Volume 39, Issue 4,1988, Pages 283-286].

За прототип выбран способ получения висмута-212, описанный в работе [В.М.Савинов, В.Б.Павлович, А.А.Котовский и др. «Контроль технологических процессов при разработке медицинских генераторов 225Ac/213Bi и 224Ra/212Bi альфа- и гамма-спектрометрическими методами» // Ядерная энергетика, №3, 2003, стр.116-126].

В качестве исходного сырья для получения радионуклида висмут-212 авторы использовали раствор, содержащий смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов. Для получения висмута-212 выполняли следующие процедуры:

- радионуклиды торий-229, торий-228 и образующиеся дочерние продукты распада этих радионуклидов выдерживали в растворе азотной кислоты для накопления радионуклида радий-224;

- после выдержки раствор, содержащий радионуклиды торий-229, торий-228, а также радий-224 и другие дочерние продукты распада тория-229 и тория-228, пропускали через колонку с анионитом;

- радионуклиды торий-229 и торий-228 оставались в колонке с анионитом, а радий-224 и другие дочерние продукты распада тория-229 и тория-228 собирались на выходе из колонки;

- полученный раствор, содержащий радий-224 и другие дочерние продукты распада радионуклидов торий-229 и торий-228, упаривали досуха;

- сухой остаток, содержащий радионуклид радий-224, растворяли в соляной кислоте;

- кислотный раствор радия-224 пропускали через колонку с катионитом;

- радионуклид радий-224 оставался в колонке с катионитом;

- колонку, содержащую радионуклид радий-224, промывали раствором соляной кислоты;

- на выходе из колонки с катионитом собирали раствор с радионуклидом висмут-212.

Однако этот способ получения висмута-212 имеет ряд недостатков:

- многостадийный процесс получения висмута-212 из смеси радионуклидов торий-228 и торий-229 является трудоемким, осуществляется путем последовательного радиохимического выделения радионуклида радий-224 методом сорбции из исходного раствора тория-228 и тория-229 и на следующей стадии выделения из раствора радия-224 радионуклида висмут-212;

- в исходном растворе радионуклидов торий-228 и торий-229 за время хранения накапливается примесный радионуклид таллий-208, обладающий гамма-излучением с энергией 2,6 МэВ, что создает большие радиационные нагрузки на персонал, осуществляющий процесс получения висмута-212.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей изобретения является упрощение технологического процесса получения радионуклида висмут-212 и снижение выхода примесных радионуклидов.

Для решения поставленной задачи в способе получения радионуклида висмут-212 из раствора, содержащего смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов, с последующим выделением висмута-212 с помощью ионообменных смол предлагается раствор, содержащий смесь радионуклидов торий-228 и торий-229, а также дочерние продукты распада этих радионуклидов барботировать газом, удаляя при этом из раствора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220, направлять газ через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада по цепочке 220Rn→216Po212Pb накапливать радионуклид свинец-212, который после выхода активности свинца-212 на насыщение десорбировать и полученный раствор направлять на колонку с ионообменной смолой, с которой периодически смывать дочерний продукт распада радионуклид висмут-212.

При этом раствор барботируют воздухом, и/или азотом, и/или гелием, и/или аргоном, и/или криптоном, и/или ксеноном.

В качестве сорбционного устройства можно использовать пустотелый объем, размеры которого обеспечивают время пребывания радона-220, достаточное для его полного распада в радионуклид свинец-212.

В качестве сорбционного устройства можно использовать ловушку с активированным углем.

Сорбционное устройство (им может быть длинная трубка, или большой сосуд, или ловушка с сорбентом, например активированным углем) должно обеспечивать время протекания через него потока газа не менее 10-и минут (примерно десять периодов полураспада радона-220 - 55,6 с).

В предлагаемом способе получения радионуклида висмут-212 использовано наличие среди дочерних продуктов распада тория-228 газообразного радионуклида радон-220, который в результате распада по цепочке 220Rn→216Po→212Pb→212Bi приводит к образованию целевого радионуклида висмут-212. Период полураспада радона-220 составляет 55,6 сек, что обеспечивает возможность его удаления из водных растворов кислот с помощью барботажа газа [Схемы распада радионуклидов. Энергия и интенсивность излучения. Публикация 38 МКРЗ. В двух частях. Часть вторая. Книга 2. М.: Энергоатомиздат, 1987, стр.204-205].

Инертный газ радон в 6,7 раза тяжелее воздуха, обладает низким коэффициентом растворимости в воде [А.С.Сердюкова, Ю.Т.Капитанов. Изотопы радона и продукты их распада в природе. М.: Атомиздат, 1975]. Из-за малой растворимости радон легко выделяется из воды в воздух. В термальных водах, имеющих температуру свыше 30°C, коэффициент растворимости радона в воде уменьшается вдвое по отношению к так называемым "холодным" радоновым водам с температурой до 10°C. Быстрому выделению радона в воздух также способствуют насыщенность термальных радоновых вод азотом и углекислотой. По данным ряда авторов потери радона из воды с выделяющимся из нее углекислым газом достигают 36%.

Изотопы радона в исключительно редких случаях вступают в химические соединения. Химические соединения радона-220 не известны.

В присутствии в растворе всплывающих газовых пузырьков атомы радона в процессе диффузии в жидкости приникают в объем пузырьков и выносятся на поверхность раствора. Транспортируя радон-220 по технологическим газовым коммуникациям, его доставляют в систему улавливания, где удерживают до полного распада в радионуклид свинец-212, который, в свою очередь, распадается в висмут-212.

После удаления из системы улавливания радионуклид висмут-212 используется по своему прямому назначению для приготовления медицинских препаратов, применяемых при терапии онкологических заболеваний.

Предлагаемый способ получения радионуклида висмут-212 обладает преимуществами по сравнению с описанным прототипом:

- полученный таким способом радионуклид висмут-212 не содержит радиоактивных примесей, поскольку в цепочках распада тория-229 и тория-228 имеется только один газообразный радионуклид - радон-220;

- исключается многостадийный радиохимический передел раствора, содержащего смесь радионуклидов торий-228 и торий-229 и дочерних продуктов распада этих радионуклидов, в результате чего упрощается технологический процесс получения висмута-212;

- в исходном растворе, содержащем смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов, снижается примесь радионуклида таллий-208, обладающего высокоэнергетическим гамма-излучением, что снижает дозовую нагрузку на персонал.

ПРИМЕР ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В качестве исходного сырья для получения радионуклида висмут-212 используют раствор, содержащий смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов.

Для получения висмута-212 смесь радионуклидов торий-229, торий-228 и образующихся дочерних продуктов распада этих радионуклидов выдерживают в кислом растворе HNO3, помещенном в колбу-барботер объемом 50 мл. Общий объем раствора 10 мл. В колбу-барботер по трубке, погруженной в раствор кислоты, с помощью перистальтического насоса подается воздух с расходом ~50 мл/мин. В качестве прокачиваемого газа может быть использован любой из упомянутых в формуле газов или их смесей. Воздух был выбран как наиболее доступный газ.

По газовой коммуникации, представляющей собой фторопластовую трубку длиной 0,3 м из колбы-барботера, воздушный поток, содержащий атомы радона-220, подается на аэрозольный фильтр для отделения диспергированной фракции исходного раствора. После прохождения фильтра воздушный поток поступает в сорбционный объем, который представляет собой фторопластовую трубку диаметром 8 мм и длиной более одного метра. Время пребывания газового потока в трубке указанной длины достаточно для полного распада радона-220 и оседания его дочернего радионуклида свинец-212 на стенке трубки. Очищенный воздух по замкнутому контуру вновь поступает в колбу-барботер с раствором радионуклидов торий-229 и торий-228.

Продолжительность прокачки газа по контуру 20 часов, что составляет более 60% времени, необходимого для выхода активности радионуклида свинец-212 в насыщение. После завершения прокачки трубку отсоединяют от установки и с ее внутренней поверхности десорбируют свинец-212.

Десорбция свинца-212 проводится последовательно двумя растворами: горячей водой объемом 50 мл и 6М HCl объемом 50 мл (генератор торий-228/свинец-212).

Из полученного солянокислого раствора на катионите Дауэкс-50 сорбируют радионуклиды свинец-212 и висмут-212 и по мере накопления и необходимости слабым солянокислым раствором десорбируют необходимое количество висмута-212 (генератор свинец-212/висмут-212).

Все растворы, включая раствор в колбе-барботере, подвергаются спектрометрическому анализу для определения радионуклидного состава и сведения материального баланса.

Предложенный способ получения висмута-212 позволяет по сравнению со способом, выбранным за прототип, уменьшить трудоемкость процесса, снизить содержание примесных радионуклидов.

1. Способ получения радионуклида висмут-212 из раствора, содержащего смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов, с последующим выделением висмута-212 с помощью ионообменных смол, отличающийся тем, что раствор, содержащий смесь радионуклидов торий-228 и торий-229, а также дочерние продукты распада этих радионуклидов барботируют газом, удаляя при этом из раствора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220, направляют газ через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада по цепочке 220Rn→216Po→212Pb накапливают радионуклид свинец-212, который после выхода активности свинца-212 на насыщение десорбируют и полученный раствор направляют на колонку с ионообменной смолой, с которой периодически смывают дочерний продукт распада радионуклид висмут-212.

2. Способ по п.1, отличающийся тем, что раствор барботируют воздухом, и/или азотом, и/или гелием, и/или аргоном, и/или криптоном, и/или ксеноном.

3. Способ по п.1, отличающийся тем, что в качестве сорбционного устройства используют пустотелый объем, размеры которого обеспечивают время пребывания радона-220, достаточное для его полного распада в радионуклид свинец-212.

4. Способ по п.1 отличающийся тем, что в качестве сорбционного устройства используют ловушку с активированным углем.



 

Похожие патенты:
Изобретение относится к области атомной техники. .
Изобретение относится к реакторной технологии получения радиоизотопов. .
Изобретение относится к реакторной технологии получения радиоизотопов. .

Изобретение относится к технологиям производства медицинского изотопа Mo-99 из облученного топлива на основе урана. .

Изобретение относится к ядерным реакторам с жидкосолевым ядерным топливом. .

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний

Изобретение относится к реакторной технологии получения радионуклидов для ядерной медицины. В заявленном способе получения радионуклида 228Th, включающем облучение мишени, в качестве материала мишени берут природный изотоп тория 230Th, мишень размещают в линейный ускоритель электронов и облучают γ-квантами тормозного излучения, и в процессе пороговой ядерной реакции 230Th(γ,2n)228Th накапливают в ней целевой радионуклид 228Th. В качестве материала мишени могут быть использованы соединения 230ThF4 или 230ThO2 или металлический 230Th. Технический результат заключается в получении α-излучающих нуклидов, позволяющем ликвидировать дефицит терапевтических α-излучателей на рынке медицинских радионуклидов и обеспечить удовлетворение растущих потребностей в будущем. 1 з.п. ф-лы.

Изобретение относится к реакторной технологии получения радиоизотопов для ядерной медицины. Способ получения радиоизотопа 99Mo включает облучение потоком нейтронов мишени с последующим выделением целевого радиоизотопа, образующегося в результате 98Mo(n,γ)99Mo реакции. В качестве мишени используют наночастицы металлического молибдена или его соединений, нерастворимых в воде, или водном растворе щелочи, или водном растворе NH4OH. При этом облучение мишени проводят в воде, или водном растворе щелочи, или водном растворе NH4OH. Целевой радиоизотоп 99Mo отделяют в составе аниона растворимого в воде молибдата (99MoO4)-2 от наночастиц. Изобретение обеспечивает повышение удельной активности радиоизотопа 99Mo.
Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (99Мо), являющегося основой для создания радиоизотопных генераторов технеция-99m (99mTc). В заявленном способе производство радиоизотопа молибден-99 по реакции 98Мо(n,γ)99Мо, осуществляемой в потоке тепловых нейтронов ядерного реактора, проводится с использованием матрицы-буфера из мезопористых неорганических материалов, в каналы которой вносят соединения молибдена. Изготовление мишени производится пропиткой активированного угля с удельной поверхностью более 300 м2/г раствором парамолибдата аммония (NH4)6Mo7O24 и последующей термообработкой, в результате чего на поверхности каналов образуются нанослои MoO3. Доля атомов отдачи 99Мо, покидающих слои MoO3 и локализующихся в буфере, зависит от толщины нанесенных слоев. Средняя толщина нанослоев MoO3, последовательно наносимых в каналы матрицы, задается числом нанесений и ограничена эффективным диаметром каналов. После облучения разделение содержащего ядра отдачи активированного угля и стартовых наночастиц MoO3 достигается путем элюирования более 97% MoO3 из мишени 20%-ным раствором аммиака в воде. Последующий процесс выделения ядер отдачи из матрицы реализуется газификацией угольной составляющей матрицы путем сжигания. Техническим результатом является упрощение способа изготовления мишени, повышение производительности процесса наработки 99Мо за счет создания нанослоев по всему объему матрицы, что позволяет достичь высокой гомогенности состава «нанослой Мо - буфер», обеспечить эффективность использования стартового материала и повысить эффективность сбора атомов отдачи, возможность получения равномерного распределения молибдена по объему активированного угля при осаждении молибденовых покрытий на поверхности его мезопор. 2 з.п. ф-лы, 1 пр.

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (99Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (99mTc). Способ изготовления мишени для производства радиоизотопа молибден-99 осуществляется посредством реакции 98Mo(n,γ)99Mo, протекающей в потоке тепловых нейтронов ядерного реактора, с использованием матрицы-буфера из мезопористых неорганических материалов, в каналы которой вносят соединения молибдена. Изготовление мишени производится пропиткой сорбента Al2O3 с удельной поверхностью 200 м2/г раствором парамолибдата аммония (NH4)6Mo7O24 и последующей термообработкой в потоке кислорода, в результате чего на поверхности каналов образуется нанослой MoO3. Средняя толщина нанослоев MoO3, последовательно наносимых в каналы матрицы, задается числом нанесений и ограничена эффективным диаметром каналов. После облучения разделение содержащего ядра отдачи буфера Al2O3 и стартовых наночастиц MoO3 достигается путем элюирования более 97% MoO3 из мишени 20%-ным раствором аммиака в воде. Техническим результатом является возможность получения равномерного распределения молибдена по объему Al2O3 при осаждении молибденовых покрытий на поверхности его мезопор, упрощение способа изготовления мишени, повышение производительности процесса наработки 99Mo за счет создания нанослоев по всему объему матрицы, достижение высокой гомогенности состава «нанослой Мо - буфер» при повышении эффективности использования стартового материала и сбора атомов отдачи. 2 з.п. ф-лы, 1 табл., 1 пр.
Наверх