Пеногенератор вихревого типа



Пеногенератор вихревого типа
Пеногенератор вихревого типа

 


Владельцы патента RU 2430760:

Кочетов Олег Савельевич (RU)
Стареева Мария Олеговна (RU)

Пеногенератор предназначен для тушения пожаров в резервуарах с легковоспламеняющимися жидкостями. Пеногенератор содержит цилиндрический корпус с соплом для подвода водного раствора пенообразователя и штуцер для подвода воздуха, корпус выполнен в виде втулки, внутри которой расположен штуцер для подвода воздуха, при этом внутренняя поверхность втулки и внешняя поверхность штуцера образуют кольцевой канал для подвода раствора, а соосно с втулкой жестко соединена цилиндрическая гильза, при этом соосно корпусу подсоединено, посредством гильзы, сопло, выполненное в виде центробежного завихрителя потока раствора с, по крайней мере тремя, тангенциальными вводами в виде цилиндрических отверстий, причем гильза является частью сопла и установлена коаксиально и соосно по отношению к завихрителю, а в торцевой поверхности завихрителя выполнены коническое и цилиндрическое дроссельные отверстия, при этом завихритель установлен в цилиндрической камере корпуса с образованием кольцевой цилиндрической камеры для подвода раствора к тангенциальным вводам и соединен с тремя камерами, установленными последовательно и соосно ему: конической, цилиндрической, диффузорной выходной камерой, причем установлены таким образом, что выход одной камеры является входом для другой. Технический результат: повышение эффективности пеногенератора, вырабатывающего пену высокой кратности. 2 ил.

 

Изобретение относится к противопожарной технике, а именно к конструкциям пеногенераторов, и может найти применение в системах подслойного тушения пожаров в резервуарах с легковоспламеняющимися жидкостями (ЛВЖ).

Наиболее близким техническим решением, выбранным в качестве прототипа, является пеногенератор (описание к патенту РФ №2145680, МКИ 7 F04F 5/02, опубл. 20.02.2000 г.), содержащий цилиндрический корпус с фланцами на торцах, в одном из которых установлено сопло для подвода водного раствора пенообразователя, а в боковой поверхности корпуса - радиальный патрубок подвода газа, установленную внутри корпуса напротив сопла камеру смешения цилиндрической формы с расширением на входе и конусообразный диффузор на ее выходе.

Недостатком известного пеногенератора является невозможность выработки пены высокой кратности при граничных значениях условий работы пеногенератора.

Технический результат - повышение эффективности пеногенератора, вырабатывающего пену высокой кратности.

Это достигается тем, что в пеногенераторе, содержащем цилиндрический корпус с соплом для подвода водного раствора пенообразователя и штуцер для подвода воздуха, корпус выполнен в виде втулки, внутри которой и соосно ей расположен штуцер для подвода воздуха, при этом внутренняя поверхность втулки и внешняя поверхность штуцера образуют кольцевой канал для подвода раствора пенообразователя, а соосно с втулкой жестко соединена цилиндрическая гильза с внешней резьбой, при этом соосно корпусу подсоединено, посредством гильзы с внутренней резьбой, сопло, выполненное в виде центробежного завихрителя потока раствора в виде глухой цилиндрической вставки с, по крайней мере тремя, тангенциальными вводами 13 в виде цилиндрических отверстий, причем гильза является частью сопла и установлена коаксиально и соосно по отношению к центробежному завихрителю, а в торцевой поверхности центробежного завихрителя выполнены последовательно соединенные, соосные между собой и корпусом осевые коническое и цилиндрическое дроссельные отверстия, которые подсоединены к штуцеру для подвода раствора пенообразователя, при этом центробежный завихритель установлен в цилиндрической камере корпуса с образованием кольцевой цилиндрической камеры для подвода раствора пенообразователя к тангенциальным вводам центробежного завихрителя и соединен с тремя камерами, установленными последовательно и соосно ему: конической, цилиндрической, диффузорной выходной камерой, причем камеры установлены таким образом, что выход одной камеры является входом для другой.

На фиг.1 представлена схема пеногенератора вихревого типа, на фиг.2 - разрез А-А фиг.1.

Пеногенератор вихревого типа (фиг.1) содержит корпус, который выполнен в виде втулки 1, внутри которой и соосно ей, расположен штуцер 17 для подвода воздуха. При этом внутренняя поверхность втулки 1 и внешняя поверхность штуцера 17 образуют кольцевой канал 8 для подвода раствора пенообразователя из магистрали. Соосно с втулкой 1 жестко соединена цилиндрическая гильза 2 с внешней резьбой 3.

Соосно корпусу подсоединено, посредством гильзы 4 с внутренней резьбой, сопло 5, выполненное в виде центробежного завихрителя 6 потока раствора пенообразователя в виде глухой цилиндрической вставки 12 с, по крайней мере тремя, тангенциальными вводами 13 в виде цилиндрических отверстий (фиг.2). Гильза 4 является частью сопла 5 и установлена коаксиально и соосно по отношению к центробежному завихрителю 6. В торцевой поверхности центробежного завихрителя 6 выполнены последовательно соединенные, соосные между собой и корпусом осевые коническое 10 и цилиндрическое 11 дроссельные отверстия, которые подсоединены к штуцеру 17 для подвода раствора пенообразователя.

Центробежный завихритель 6 установлен в цилиндрической камере 9 корпуса с образованием кольцевой цилиндрической камеры 7 для подвода раствора пенообразователя к тангенциальным вводам 13 центробежного завихрителя 6 и соединен с тремя камерами, установленными последовательно и соосно ему: конической 14, цилиндрической 15, диффузорной выходной камерой 16, причем камеры установлены таким образом, что выход одной камеры является входом для другой. Тангенциальные вводы 13 выполнены в виде каналов, тангенциально расположенных к внутренней поверхности вставки 12.

Пеногенератор вихревого типа работает следующим образом.

В корпус пеногенератора через штуцер 17 осуществляется подвод сжатого воздуха. Через кольцевой канал 8 подводится раствор пенообразователя из магистрали. В полости вставки 12, выполняющей функцию центробежного завихрителя 6 раствора пенообразователя, происходит формирование вихря, который взаимодействует со струей воздуха, поступающего под давлением через коническое 10 и цилиндрическое 11 дроссельные отверстия.

На выходе из полости вставки 12 формируется поток пены, характеризующийся постоянной тангенциальной скоростью. При этом угловая скорость закрученного потока пены определяет величину угла распыла генерируемого газокапельного потока.

Величина тангенциальной скорости в полости вставки 12 зависит от соотношения общей площади поперечного сечения тангенциальных каналов 13 и площади сечения осевого цилиндрического 11 дроссельного отверстия. Сформированный в центробежном завихрителе 6 закрученный поток пены поступает во входное отверстие конической камеры 14. При прохождении участков 15 и 16 формируется ускоренный поток пены. Интенсивное образование кавитационных пузырьков в закрученном потоке происходит в диффузорной выходной камере 16. Пена представляет собой дисперсную систему, в которой пузырьки воздуха заключены в тонкие оболочки негорючей жидкости (водные растворы солей, кислот, поверхностно-активных веществ). Огнегасящий эффект пены основан на изоляции поверхности горящей жидкости от кислорода воздуха и нагретых горючих паров, выделяющихся с поверхности этой жидкости. Пена не только резко сокращает процесс испарения, но и охлаждает поверхность горящей жидкости, так как в состав пены входит вода. Воздушно-механическая пена образуется при механическом смешении воздуха и поверхностно-активного вещества (пенообразователь ПО-1 или ПО-6). В воздушно-механической пене содержится около 90% (по объему) воздуха и 10% водного раствора пенообразователя. Для тушения пожаров эффективнее применять высокократную воздушно-механическую пену, в которой содержится около 99% (по объему) воздуха, 0,96% воды и около 0,04% пенообразователя. Кратность обычной воздушно-механической пены 8÷12, а высокократной - 100 и более. Стойкость воздушно-механической пены: от 20 до 40 мин.

Пену следует применять при горении хлопкового волокна других плохо смачивающихся волокнистых материалов. Особенно эффективна пена при тушении пожаров легковоспламеняющихся жидкостей (ЛВЖ) и горючих жидкостей.

Пеногенератор вихревого типа, содержащий цилиндрический корпус с соплом для подвода водного раствора пенообразователя и штуцер для подвода воздуха, отличающийся тем, что корпус выполнен в виде втулки, внутри которой и соосно с ней, расположен штуцер для подвода воздуха, при этом внутренняя поверхность втулки и внешняя поверхность штуцера образуют кольцевой канал для подвода раствора пенообразователя, а соосно с втулкой жестко соединена цилиндрическая гильза с внешней резьбой, при этом соосно с корпусом подсоединено, посредством гильзы с внутренней резьбой, сопло, выполненное в виде центробежного завихрителя потока раствора в виде глухой цилиндрической вставки с, по крайней мере тремя тангенциальными вводами в виде цилиндрических отверстий, причем гильза является частью сопла и установлена коаксиально и соосно по отношению к центробежному завихрителю, а в торцевой поверхности центробежного завихрителя выполнены последовательно соединенные, соосные между собой и корпусом осевые коническое и цилиндрическое дроссельные отверстия, которые подсоединены к штуцеру для подвода раствора пенообразователя, при этом центробежный завихритель установлен в цилиндрической камере корпуса с образованием кольцевой цилиндрической камеры для подвода раствора пенообразователя к тангенциальным вводам центробежного завихрителя и соединен с тремя камерами, установленными последовательно и соосно конической, цилиндрической, диффузорной выходной камерами, причем камеры установлены таким образом, что выход одной камеры является входом для другой.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики, в частности к струйным пароводяным подогревателям воды, используемым в системах теплоснабжения, горячего водоснабжения и водоподготовки.

Изобретение относится к струйным насосам, в частности к техническим устройствам жидкостно-газовых эжекторов, в которых индуцируемой средой является струя жидкости, истекающая под давлением из многоствольного активного сопла.

Изобретение относится к гидро-газодинамическому оборудованию, а именно к эжекторным установкам, и может быть использовано в теплоэнергетике, нефтеперерабатывающей, химической промышленности, а также в других отраслях промышленности, где необходимо использовать смешение жидкости и газа.

Изобретение относится к области теплоэнергетики и может применяться в любых отраслях народного хозяйства для нагревания жидкости паром, вводимым в поток жидкости, это, в частности, системы теплоснабжения, горячего водоснабжения и водоподготовки.

Изобретение относится к области теплоэнергетики и может применяться в любых отраслях народного хозяйства, имеющих в эксплуатации трубопроводные водяные системы и источники пара.

Изобретение относится к области теплоэнергетики и может применяться в любых отраслях народного хозяйства, имеющих в эксплуатации трубопроводные водяные системы и источники пара.

Изобретение относится к эжекторным установкам и может быть использовано при бурении скважин и добыче нефти. .

Изобретение относится к области теплоэнергетики и может применяться в любых отраслях народного хозяйства, имеющих в эксплуатации трубопроводные водяные системы и источники пара.

Изобретение относится к области теплоэнергетики и может применяться в любых отраслях народного хозяйства для нагревания жидкости паром, вводимым в поток жидкости, это, в частности, системы теплоснабжения, горячего водоснабжения и водоподготовки.

Изобретение относится к области противопожарной техники и предназначено для использования в автоматических системах пожаротушения путем генерации высокократной полидисперсной пены в условиях задымления помещения при блокировании быстрогорящих продуктов высокократной полидисперсной пеной.

Изобретение относится к области противопожарной техники и предназначено для использования в автоматических системах пожаротушения путем генерации высокократной полидисперсной пены в условиях задымления помещения при блокировании быстрогорящих продуктов высокократной полидисперсной пеной.

Изобретение относится к области противопожарной техники и предназначено для использования в автоматических системах пожаротушения путем генерации высокократной полидисперсной пены в условиях задымления помещения при блокировании быстрогорящих продуктов высокократной полидисперсной пеной.

Изобретение относится к области противопожарной техники и предназначено для использования в автоматических системах пожаротушения путем генерация высокократной полидисперсной пены в условиях задымления помещения при блокировании быстрогорящих продуктов высокократной полидисперсной пеной.

Изобретение относится к области противопожарной техники и предназначено к применению в стационарных установках пенного пожаротушения вертикальных резервуаров с нефтью и нефтепродуктами.

Изобретение относится к оборудованию для тушения нефтепродуктов в вертикальных стальных резервуарах и решает задачу автоматического тушения нефтепродуктов в вертикальных стальных резервуарах с любым типом крыш без участия пожарной команды, устойчивости противопожарного оборудования к взрыву паровоздушной смеси.

Изобретение относится к стационарна и мобильным установкам пожаротушения, в которых в качестве огнетушащего вещества используется вода с пенообразователем. .

Изобретение относится к стационарным и мобильным установкам пожаротушения, в которых в качестве огнетушащего вещества используется вода с добавками пенообразователей.

Изобретение относится к универсальным устройствам для выполнения специальных работ, прежде всего на складах хранения боеприпасов и других материальных ценностей.

Изобретение относится к области пожаротушения и содержит цилиндрический корпус, камеру смешения, патрубок для подачи в цилиндрический корпус водного раствора пенообразователя, сопло для подачи в камеру смешения водного раствора пенообразователя, патрубок подвода газа, конусообразный диффузор на выходе камеры смешения.

Изобретение относится к средствам распыливания жидкостей, растворов
Наверх