Способ упрочнения деталей

Изобретение относится к упрочнению металлических деталей и может быть использовано для повышения долговечности и ресурса деталей. Перед началом эксплуатации детали производят в несколько этапов ее упрочняющее нагружение. Величину нагрузки увеличивают на каждом последующем этапе. Нагружение осуществляют циклами и с выдержкой во времени на уровне максимальных и минимальных напряжений в каждом цикле нагружения. Величину нагрузки выбирают из условия достижения в наиболее нагруженной зоне детали максимальными напряжениями цикла значения не менее предела пропорциональности, но менее предела временного сопротивления материала детали. В результате повышается долговечность деталей. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к упрочнению металлических деталей с концентраторами или без концентраторов напряжений и может быть использовано для повышения долговечности и ресурса деталей, работающих в условиях малоцикловой усталости, ползучести и длительной прочности при повышенных температурах.

Известен способ упрочнения деталей, работающих в условиях циклических нагрузок, при котором перед началом эксплуатации определяют величину нагрузки для упрочняющего нагружения детали и осуществляют это нагружение до уровня напряжений выше предела усталости [описание изобретения к авторскому свидетельству 172865, МПК C21D 7/02, заявл. 18.04.1963 г., опубл. 07.07.1965 г.] или ниже предела выносливости материала детали [описание изобретения к авторскому свидетельству 443920, МПК C21D 7/02, заявл. 02.10.72 г., опубл. 25.09.74 г.].

Недостатком этих способов является то, что они применяются для деталей, работающих в многоцикловой области при напряжениях, величина которых меньше пределов пропорциональности и упругости, т.е. при отсутствии пластических деформаций в циклах нагружения.

Наиболее близким к изобретению по технической сущности и достигаемому результату является способ упрочнения деталей [описание изобретения к авторскому свидетельству 1039972, МПК C21D 7/02, заявл. 25.01.82 г., опубл. 07.09.83 г.], работающих в условиях циклических нагрузок, при котором определяют величину нагрузки для упрочняющего нагружения деталей и производят это нагружение.

Упрочняющее нагружение осуществляют периодически в период эксплуатации деталей, величину нагрузки выбирают 0,7-0,9 от разрушающей и прикладывают ее в направлении действия рабочих нагрузок, затем осуществляют полную разгрузку. Величину каждой последующей упрочняющей нагрузки выбирают равной или большей предыдущей и прикладывают ее через промежутки времени, составляющие 5-20% от долговечности, достигнутой после первого приложения упрочняющей нагрузки.

Такой способ имеет следующие недостатки.

При нагружении детали нагрузками величиной 0,7-0,9 от разрушающей нагрузки в материале детали возникают существенные пластические деформации, а в наиболее нагруженных зонах детали - в зонах концентрации напряжений и деформаций напряжения могут достигать величины предела временного сопротивления, при котором интенсивно развивается процесс разрушения.

В процессе эксплуатации в результате накопления микроповреждений в зоне концентрации напряжений пластичность материала уменьшается и при очередном упрочняющем нагружении нагрузками величиной 0,7-0,9 от разрушающей нагрузки возникает опасность, что деталь доведена до состояния неконтролируемого предразрушения при отсутствии видимых трещин, либо ее размеры в результате очередного пластического деформирования превысят технологические допуски и это приведет к потере работоспособности либо к выходу из строя всего изделия.

Необходимость приложения упрочняющей нагрузки и в период эксплуатации деталей вызывает необходимость разборки и последующей сборки объекта, что делает такой способ трудно реализуемым или вообще не применимым для множества таких ответственных деталей, как, например, валы или диски газотурбинных двигателей (ГТД) и установок (ГТУ).

Кроме того, такой способ применим только для деталей, подвергающихся знакопостоянному циклическому нагружению, что сужает область его применения, т.к. значительное количество ответственных деталей ГТД и ГТУ работают одновременно в условиях малоцикловой усталости, ползучести и длительной прочности.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение долговечности деталей. Дополнительным техническим результатом является расширение области применения способа за счет обеспечения возможности упрочнения деталей, работающих одновременно в условиях малоцикловой усталости, ползучести и длительной прочности.

Исключение приложения упрочняющей нагрузки в период эксплуатации деталей предотвращает сборку-разборку объекта для приложения упрочняющей нагрузки, уменьшает пластические деформации материала деталей и предотвращает потерю работоспособности детали после упрочняющего нагружения в период ее эксплуатации.

Технический результат достигается тем, что в способе упрочнения деталей, работающих в условиях циклических нагрузок, при котором определяют величину нагрузки для упрочняющего нагружения деталей и производят нагружение, в отличие от известного, нагружение производят перед началом эксплуатации детали в несколько этапов, величину нагрузки увеличивают на каждом последующем этапе, при этом нагружение на каждом этапе осуществляют циклами и с выдержкой во времени на уровне максимальных и минимальных напряжений в каждом цикле нагружения, а величину нагрузки выбирают из условия достижения в наиболее нагруженной зоне детали максимальными напряжениями цикла значения не менее предела пропорциональности, но менее предела временного сопротивления.

Нагружение детали производят при максимальной рабочей температуре.

На первом этапе выбирают величину нагрузки, при которой максимальные напряжения цикла не превышают максимальных рабочих напряжений детали.

Заявляемый способ характеризуется следующими схемами:

фиг.1 - схема циклов на каждом этапе нагружения;

фиг.2 - диаграммы зависимости накопления пластических деформаций образцов от времени без упрочняющего нагружения и при циклических упрочняющих нагружениях.

Способ реализуется следующим образом.

Перед началом эксплуатации деталей, работающих в условиях циклических нагрузок, для повышения их долговечности производят упрочняющее нагружение. Упрочняющее нагружение осуществляют в несколько этапов (фиг.1), при этом величину нагрузки увеличивают на каждом последующем этапе. После завершения упрочняющего нагружения на первом этапе переходят ко второму этапу нагружения при увеличении уровня напряжений σmax и прежней величине σmin. При этом нагружение на каждом этапе осуществляют циклами. Количество этапов определяют для каждого материала на основе результатов предварительных экспериментальных исследований при различном количестве этапов и количестве циклов на каждом этапе нагружения. Упрочняющее нагружение детали производят при максимальной рабочей температуре.

Величину нагрузки выбирают из условия достижения максимальными напряжениями, возникающими в цикле нагружения, значения не менее предела пропорциональности, но менее предела временного сопротивления материала детали. На первом этапе величину нагрузки выбирают такой, чтобы максимальные напряжения цикла нагружения были на уровне предела пропорциональности или выше, но не превышали максимальных рабочих напряжений детали. На последующих этапах максимальные напряжения в цикле должны быть выше предыдущих, но меньше предела временного сопротивления материала детали.

Упрочняющее нагружение осуществляют с выдержкой во времени на уровне максимальных и минимальных напряжений в каждом цикле нагружения. Время выдержки Δτmax на уровне максимальных напряжений σmax назначают на основе данных эксплуатационных условий, а также на основе результатов экспериментов по исследованию кривых релаксации напряжений для материала детали при начальных напряжениях σ=σmax и постоянной относительной деформации ε=const, соответствующей начальным напряжениям σ=σmax. Минимальное время выдержки в цикле нагружения Δτmin назначают равным или меньше величины Δτmax. Минимальную величину напряжения σmin в цикле нагружения выбирают из условия 0≤Rσ<0,1, где Rσ - коэффициент асимметрии цикла.

Пример осуществления способа.

Стандартные образцы диаметром 7 мм для испытаний на малоцикловую усталость и длительную прочность изготовлены из стали ЭП-609Ш, которая при температуре испытаний Т=404°С имеет предел пропорциональности σпц=600 МПа, предел временного сопротивления σв=735 МПа. Максимальные рабочие напряжения деталей (например, для валов и дисков ГТД) составляют σmaxраб=686-712 МПа.

При исходном нагружении образцов (без упрочняющего нагружения) при T=404°С напряжениями σmax=712 МПа, σmin=0 МПа (т.е. Rσ=0), Δτmax=120 с, Δτmin=60 с были получены следующие характеристики долговечности: Nц=60 циклов, τ=2 часа.

Предварительное упрочняющее нагружение осуществляли отнулевыми циклами (Rσ=0) при T=404°С с аналогичными выдержками Δτmax и Δτmin и напряжениями в начальных циклах, которые не превышали максимальных рабочих напряжений детали σmax раб=686-712 МПа: на 1-м этапе σmax1=600 МПа - Nц1=536 циклов, на 2-м этапе σmax2=660 МПа - Nц2=407 циклов и на 3-м этапе σmax3=686 МПа - Nц3=3455 циклов. После предварительных упрочняющих нагружений характеристики долговечности при T=404°С, σmax=712 МПа и σmin=0 МПа составили: Nц=747 циклов, τ=24,89 ч. Увеличение долговечности после упрочняющей обработки по данному способу составило n=τуприсх=Nупр/Nисх=747/60≈12,45 раз. При реализации способа по а.с. №1039972 наибольший упрочняющий эффект составил n=3,48 раз.

Дополнительное подтверждение эффекта упрочнения по заявляемому способу дают зависимости накопления пластических деформаций образцов от времени при циклическом нагружении (фиг.2).

Диаграмма 1, представленная на фиг.2, соответствует циклическому нагружению образцов при σmax=686 МПа - Nц3=3560 циклов (до разрушения) без предварительного упрочняющего нагружения. В процессе нагружения происходит постоянное и прогрессирующее накопление пластических деформаций и после нагружения в течение 118,64 часа при достижении относительной пластической деформацией предельной величины εпред=0,10 мм/мм, произошло разрушение.

Диаграмма 2, представленная на фиг.2, отражает накопление пластических деформаций при предварительном упрочняющем последовательном циклическом нагружении образцов на этапах 1-3 (фиг.1).

После упрочняющего нагружения на первых двух этапах, описанных выше, видно, что на протяжении всего 3-го этапа упрочняющего нагружения при σmax3=686 МПа до Nц3=3455 циклов (114,16 ч) увеличения пластических деформаций не происходит. Это говорит о том, что уже после двух этапов предварительного упрочняющего циклического нагружения происходит значительное упрочнение материала. Разрушение произошло только после существенного увеличения максимальных напряжений в цикле до σmax=712 МПа и σmin=0 МПа при значительно меньшей относительной пластической деформации - εпред=0,06 мм/мм, что также свидетельствует об уменьшении пластических деформаций и упрочнении материала.

Таким образом использование данного способа позволяет повышать как циклическую, так и длительную прочность ответственных деталей, работающих при повышенных температурах, не менее чем в 12 раз. Такое существенное повышение долговечности можно объяснить сложным взаимовлиянием циклического нагружения и ползучести. Циклическое пластическое деформирование материала при повышенной температуре и длительной выдержке под нагрузкой (Δτmax=120 с), а также последующие длительные паузы при разгрузке (Δτmin) приводят к значительному увеличению плотности дислокации, образованию различных дислокационных структур и больших внутренних (остаточных) микро- и макронапряжений. В процессе выдержки под действием нагрузки в материале протекают процессы ползучести и релаксации и выравнивания уровня внутренних напряжений, что стабилизирует состояние материала. Указанные факторы при циклическом нагружении приводят к деформационному циклическому упрочнению материала, при котором внешние напряжения уравновешиваются внутренними напряжениями. Этот эффект наблюдается как при основной работе материала детали (или испытании образцов), так и в процессе предварительного упрочняющего нагружения: упругие свойства материала - пределы пропорциональности, упругости и текучести увеличиваются, что приводит к существенному уменьшению накопления пластических деформаций и, следовательно, уменьшению повреждаемости материала в процессе работы (или испытания) и повышению долговечности деталей.

1. Способ упрочнения деталей, работающих в условиях циклических нагрузок, при котором определяют величину нагрузки для упрочняющего нагружения деталей и производят нагружение, отличающийся тем, что упрочняющее нагружение производят перед началом эксплуатации детали в несколько этапов, величину нагрузки увеличивают на каждом последующем этапе, при этом нагружение на каждом этапе осуществляют циклами и с выдержкой во времени на уровне максимальных и минимальных напряжений в каждом цикле нагружения, а величину нагрузки выбирают из условия достижения в наиболее нагруженной зоне детали максимальными напряжениями цикла значения не менее предела пропорциональности, но менее предела временного сопротивления материала детали.

2. Способ по п.1, отличающийся тем, что упрочняющее нагружение детали производят при максимальной рабочей температуре.

3. Способ по п.1 или 2, отличающийся тем, что на первом этапе выбирают величину нагрузки, при которой максимальные напряжения цикла нагружения не превышают максимальных рабочих напряжений детали.



 

Похожие патенты:
Изобретение относится к способам сварки и может быть применено для выполнения антифрикционных наплавок на уплотнительные поверхности изделий судовой арматуры из титановых сплавов, изделий химического машиностроения и др.
Изобретение относится к способу алюминотермитной сварки рельсов. .
Изобретение относится к способу сварки рельсов давлением с подогревом. .

Изобретение относится к заготовительному производству машиностроительных предприятий, в частности для подготовки материала к дальнейшей обработке методами объемной штамповки.

Изобретение относится к области металлообработки, а именно к электромеханической обработке деталей машин. .

Изобретение относится к обработке металлов давлением с использованием интенсивной пластической деформации и предназначено для получения нанокристаллической структуры материалов с увеличенным уровнем механических свойств.

Изобретение относится к области металлообработки деталей машин, в частности к способу электромеханической обработки, и может применяться в различных отраслях машиностроения.

Изобретение относится к области поверхностного пластического деформирования, а именно к выглаживанию и упрочнению наклепом поверхности деталей. .

Изобретение относится к обработке металлов давлением с использованием интенсивной пластической деформации и предназначено для получения нанокристаллической структуры материалов с увеличенным уровнем механических свойств.

Изобретение относится к способу дробеструйного упрочнения металлической детали из легкого сплава и к конструктивному элементу, содержащему эту деталь. .
Изобретение относится к черной металлургии, конкретнее к эксплуатации оборудования доменной печи

Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок многогранной или круглой форм с высоким уровнем физико-механических свойств

Изобретение относится к области упрочняюще-чистовой обработки деталей и может быть использовано в различных областях машиностроения для упрочнения поверхностей деталей
Изобретение относится к упрочнению режущего инструмента

Изобретение относится к области ультразвуковой обработки сварных соединений стыков труб трубопроводов

Изобретение относится к области ультразвуковой релаксационно-упрочняющей, сопровождающейся пластическим деформированием и озвучиванием обрабатываемой поверхности ультразвуком, и пассивирующей обработки, и может быть использовано в различных отраслях машиностроения, например строительстве мостов, судостроении, нефтяной и газовой промышленности, для ультразвуковой релаксационно-упрочняющей обработки металлоконструкций, например околошовных зон и швов сварных соединений и других поверхностей

Изобретение относится к машиностроению, в частности к способам поверхностного пластического деформирования (ППД) твердыми частицами, и предназначено для упрочнения поверхностей деталей, например шеек и галтелей коленчатых валов двигателей, компрессоров, изготовленных из железоуглеродистых сплавов

Изобретение относится к области машиностроения, в частности к электромеханической обработке деталей

Изобретение относится к области упрочнения, в частности, арматурных стержней, используемых для изготовления железобетонных элементов в виде панелей, блоков, тротуарной плитки, фибробетона
Наверх