Способ эксплуатации ядерного реактора с бериллиевым замедлителем

Изобретение относится к ядерной энергетике, в частности к управлению внутриреакторными процессами, и может быть использовано при эксплуатации действующих и сооружаемых ядерных реакторов с бериллиевым замедлителем для увеличения срока службы реактора без замены бериллиевого замедлителя. Для этого при эксплуатации ядерного реактора с бериллиевым замедлителем, работа которого на мощности чередуется с остановами, продолжительность которых ограничена, а допустимая продолжительность останова определяется из соотношения:

,

где: Т - допустимая продолжительность останова при планируемой загрузке ядерного топлива в активную зону, мес; ρ - запас реактивности реактора при планируемой загрузке ядерного топлива в активную зону без учета отравления бериллия, βэф; Q - энерговыработка реактора за время эксплуатации бериллиевой кладки, МВт·сут; а, b, с - константы для каждого реактора, которые определяют путем математической обработки результатов градуировок органов регулирования реактора в различные моменты: перед началом каждой новой кампании, после ее завершения, через различные промежутки времени после останова реактора.

 

Изобретение относится к ядерной энергетике в области управления внутриреакторными процессами и может быть использовано при эксплуатации действующих и сооружаемых ядерных реакторов с бериллиевым замедлителем для увеличения срока службы реактора без замены бериллиевого замедлителя.

Бериллий широко применяется в ядерных реакторах в качестве замедлителя. Его использование обусловлено лучшими по сравнению со многими другими материалами нейтронно-физическими характеристиками. Однако высокая стоимость бериллия сильно ограничивает его применение и требует значительных затрат при необходимости замены. Еще одной существенной особенностью бериллия является то, что при его взаимодействии с нейтронами происходит образование нуклидов с большим сечением поглощения тепловых нейтронов, например, 3Не и 6Li.

Известен способ эксплуатации исследовательского реактора BR-2 [Е.Koonen. BR-2 Research Reactor Modifications: Experience gained from the BR-2 Beryllium Matrix Replacement and Second Matrix Surveillance Programme, IAEA-SM-310/68. International Symposium on research reactor safety, operations and modifications, 1989, October 23-27. Chalk River, Ontario. AECL-9926 V.3 p.737-756], который включает работу на мощности до 120 МВт с периодическими остановами для перегрузки топлива и экспериментальных устройств общей продолжительностью до 240 суток в течение года. Недостатком этого способа является то, что максимальная продолжительность останова не установлена, т.е. он не учитывает специфику накопления в бериллиевой матрице 3Не и 6Li. В результате после одного из длительных остановов реактор не смогли вывести на мощность и были вынуждены полностью заменить бериллиевую матрицу. Кроме того, были понесены существенные убытки из-за простоя реактора, продолжавшегося более двух лет.

Известен способ эксплуатации исследовательского реактора МИР [В.А.Куприенко. Основные этапы истории и результаты исследований на реакторе МИР // Сборник трудов НИИАР, 1997 г., вып.4, с.3-17], включающий работу на мощности до 50 МВт и остановы для выполнения частичной перегрузки топлива (~1/3 активной зоны), подготовки экспериментов и проведения планово-предупредительных ремонтов. Суммарная продолжительность остановов в течение года достигает 210 суток. Возможны ситуации, например, при модернизациях различных систем или при подготовке сложных экспериментов, когда продолжительность останова может быть существенно больше. Отсутствие регламентации продолжительности останова привело к значительному уменьшению запаса реактивности за время одного из них. Реактор удалось вывести на мощность только после загрузки в него значительно большего количества «свежего» топлива, чем обычно. Если бы запас «свежего» топлива отсутствовал, то пришлось бы полностью заменять бериллиевую кладку.

Вышеуказанный недостаток устраняется тем, что в способе эксплуатации ядерного реактора с бериллиевым замедлителем, работа которого на мощности чередуется с остановами между кампаниями, продолжительность останова между кампаниями ограничивают, а допустимую продолжительность останова определяют из соотношения:

,

где: Т - допустимая продолжительность останова при планируемой загрузке ядерного топлива в активную зону, мес;

ρ - запас реактивности реактора при планируемой загрузке ядерного топлива в активную зону без учета отравления бериллия, βэф;

Q - энерговыработка реактора за время эксплуатации бериллиевой кладки, МВт·сут;

а - константа для каждого реактора, характеризующая накопление в бериллии 6Li, вычисляемая как разница между значениями запаса реактивности перед началом кампании в состоянии активной зоны со свежим бериллием и в состоянии со стационарной концентрацией 6Li в бериллии, которое определяют путем построения зависимости изменения запаса реактивности перед началом каждой новой кампании от энерговыработки на первом этапе эксплуатации бериллиевой кладки по прекращению уменьшения запаса реактивности, а запас реактивности вычисляют по результатам градуировки органов регулирования;

b - константа для каждого реактора, характеризующая изменение концентрации 3Не в бериллии в процессе работы реактора, вычисляемая как отношение уменьшения по сравнению с предыдущей кампанией остаточного запаса реактивности после завершения кампании к соответствующему увеличению энерговыработки за кампанию, запас реактивности вычисляют по результатам градуировки органов регулирования сразу после окончания очередной кампании, а энерговыработку - как произведение мощности, на которой работал реактор, и времени работы реактора на этой мощности;

с - константа для каждого реактора, характеризующая увеличение концентрации 3Не в бериллии в процессе останова, вычисляемая как отношение уменьшения запаса реактивности за время останова к продолжительности останова и к энерговыработке на момент останова, запас реактивности вычисляют по результатам градуировки органов регулирования через различные промежутки времени после останова реактора, а энерговыработку - как произведение мощности, на которой работал реактор, и времени работы реактора на этой мощности.

Новыми существенными признаками по сравнению с прототипом являются:

- введение ограничения продолжительности останова;

- алгоритм определения допустимой продолжительности останова в зависимости от энерговыработки реактора при эксплуатации бериллиевой кладки в реакторе.

Это позволяет сделать вывод, что заявляемое решение обладает новизной и изобретательским уровнем.

Для исследовательского реактора МИР, в конструкции которого предусмотрен бериллиевый замедлитель, запас реактивности с максимальной загрузкой ядерного топлива без учета отравления бериллия составляет 26,4 βэф. При планировании работ допустимую продолжительность останова определяют, исходя из соотношения:

В данном случае Т - допустимая продолжительность останова при максимальной загрузке ядерного топлива, мес;

Q - энерговыработка реактора за время эксплуатации бериллиевой кладки, МВт·сут.

Таким образом, после эксплуатации бериллия в реакторе при средней мощности, например, 40 МВт с коэффициентом использования 0,75 в течение 5 лет допустимая продолжительность останова с максимальной загрузкой ядерного топлива не должна превышать 15 мес, а после 30 лет - 1,5 мес.

Способ эксплуатации ядерного реактора с бериллиевым замедлителем, работа которого на мощности чередуется с остановами между кампаниями, отличающийся тем, что продолжительность останова между кампаниями ограничена, а допустимую продолжительность останова определяют из соотношения:
,
где Т - допустимая продолжительность останова при планируемой загрузке ядерного топлива в активную зону, мес;
ρ - запас реактивности реактора при планируемой загрузке ядерного топлива в активную зону без учета отравления бериллия, βэф;
Q - энерговыработка реактора за время эксплуатации бериллиевой кладки, МВт·сут;
а - константа для каждого реактора, характеризующая накопление в бериллии 6Li, вычисляемая как разница между значениями запаса реактивности перед началом кампании в состоянии активной зоны со свежим бериллием и в состоянии со стационарной концентрацией 6Li в бериллии, которое определяют путем построения зависимости изменения запаса реактивности перед началом каждой новой кампании от энерговыработки на первом этапе эксплуатации бериллиевой кладки по прекращению уменьшения запаса реактивности, а запас реактивности вычисляют по результатам градуировки органов регулирования;
b - константа для каждого реактора, характеризующая изменение концентрации 3Не в бериллии в процессе работы реактора, вычисляемая как отношение уменьшения по сравнению с предыдущей кампанией остаточного запаса реактивности после завершения кампании к соответствующему увеличению энерговыработки за кампанию, запас реактивности вычисляют по результатам градуировки органов регулирования сразу после окончания очередной кампании, а энерговыработку - как произведение мощности, на которой работал реактор, и времени работы реактора на этой мощности;
с - константа для каждого реактора, характеризующая увеличение концентрации 3Не в бериллии в процессе останова, вычисляемая как отношение уменьшения запаса реактивности за время останова к продолжительности останова и к энерговыработке на момент останова, запас реактивности вычисляют по результатам градуировки органов регулирования через различные промежутки времени после останова реактора, а энерговыработку - как произведение мощности, на которой работал реактор, и времени работы реактора на этой мощности.



 

Похожие патенты:

Изобретение относится к области атомной энергетики и может быть использовано в конструкциях элементов из бериллия для отражения и замедления нейтронов в ядерных реакторах.

Изобретение относится к активным зонам ядерного реактора с преимущественным использованием в первом контуре жидкометаллического теплоносителя свинец-висмут. .

Изобретение относится к расчетному моделированию активной зоны ядерного реактора. .

Изобретение относится к ядерной технике и предназначено для использования в центральной нейтронной ловушке реактора для облучения мишеней с экспериментальными образцами при осуществлении их перегрузки без сброса давления в реакторе.

Изобретение относится к ядерным паропроизводящим установкам (ЯППУ) с преимущественным использованием в качестве теплоносителя первого контура жидкометаллического теплоносителя (ЖМТ).

Изобретение относится к устройствам для закрепления внутрикорпусного оборудования ядерного реактора и предназначено для закрепления активной зоны, устанавливаемой в реакторе с водой под давлением и омываемой охлаждающим теплоносителем.

Изобретение относится к средствам контроля движения гранулированных твердых тел по тракту пневмотранспортирования

Изобретение относится к ядерным реакторам на бегущей (дефлаграционной) волне. Активная зона ядерного реактора содержит сырьевую зону 11, куда загружается свежее топливо, и зону выгорания 12, где топливо выгорает. Плутоний, полученный из урана, распадается для генерации выхода энергии, и зона выгорания 12 перемещается от начала до конца цикла выгорания. При делении активной зоны, которая является, по существу, круглой при рассмотрении в виде сверху, на центральную часть и периферийную часть, сырьевую зону 11 формируют так, чтобы масса урана на единицу объема в центральной части становилась меньше, чем масса урана на единицу объема в периферийной части. Технический результат - радиальное выравнивание мощности, величины облученности топлива и его выгорания. 4 н. и 5 з.п. ф-лы, 14 ил.

Изобретение относится к ядерной технике и может быть использовано при изготовлении блоков замедлителя и отражателя нейтронов, содержащих бериллий, преимущественно для исследовательских реакторов. Способ изготовления блоков замедлителя и отражателя нейтронов ядерного реактора предусматривает размещение бериллия в герметичном чехле. Чехол, определяющий форму блока, герметично соединяют с нижним концевиком, внутрь чехла засыпают гранулы бериллия, производят их уплотнение, затем герметично соединяют чехол с верхним концевиком. При этом при изготовлении блоков замедлителя уплотнение осуществляют до плотности 70-85% от теоретической, а при изготовлении блоков отражателя - до плотности 60-90% от теоретической. Технический результат - повышение экологичности изготовления за счет исключения технологических операций механической обработки, а также уменьшение влияния эффекта «отравления» бериллия из-за накопления 3Не. 7 з.п. ф-лы, 4 ил.

Изобретение относится к атомной энергетике и может быть использовано в энергоблоке АЭС. Устройство представляет собой атомный жидкосолевой реактор, который отличается тем, что содержит оборудование системы переработки жидкосолевой топливной композиции, обеспечивающее прием на переработку из работающего реактора объема жидкосолевой топливной композиции v1, одновременную отправку в работающий реактор объема v1 переработанной жидкосолевой топливной композиции, нагретой до рабочей температуры в реакторе, и переработку принятой жидкосолевой топливной композиции; насос для откачки жидкосолевой топливной композиции из работающего реактора на переработку и насос для закачки в работающий реактор переработанной жидкосолевой топливной композиции, оснащенные устройствами системы управления их работой, которые обеспечивают одновременный пуск, равенство объемных подач и одновременный останов насосов, и устройствами системы диагностики, которые обеспечивают диагностику насосов и устройств системы управления их работой. Технический результат – обеспечение одновременного приёма на переработку и отправки в работающий реактор жидкосолевой топливной композиции ядерного реактора. 2 н. и 18 з.п ф-лы, 2 ил.
Наверх