Чугун и способ его получения



Чугун и способ его получения
Чугун и способ его получения

 


Владельцы патента RU 2432412:

Государственное образовательное учреждение высшего профессионального образования "Брянская государственная инженерно-технологическая академия" (RU)

Изобретение относится к области металлургии, в частности к получению высокопрочных чугунов с шаровидным графитом, и может быть использовано при производстве литых изделий, отличающихся высокими механическими свойствами, в том числе при динамическом нагружении. Чугун содержит, мас.%: углерод 3,03-3,52; кремний 3,68-4,20; марганец 0,21-0,43; медь 0,61-1,12; никель 1,29-2,16; молибден 0,20-0,47; магний 0,025-0,058; барий 0,03-0,06; РЗМ 0,02-0,06; железо и примеси - остальное. Чугун выплавляют в индукционной печи, обрабатывая его перед выпуском из печи ферросилицием, обработку в ковше проводят комплексным модификатором Fe-Si-Mg-Ca-Ва-РЗМ и заливают в сухие песчано-глинистые формы. Отливки подвергают термической обработке путем неполной аустенитизации при 850-890°С, 1-2 ч и изотермической закалки с выдержкой 1,5-2 ч при 320-350°С в ваннах с легкоплавким металлическим расплавом или расплавом соли, или 2-3 ч в термической печи с обычной атмосферой. Чугун обладает высокими и стабильными механическими свойствами в отливках разной конфигурации с различной толщиной стенки. 2 н.п. ф-лы, 3 табл.

 

Изобретение относится к области металлургии, в частности к получению высокопрочных чугунов с шаровидным графитом, и может быть использовано при производстве литых изделий, отличающихся высокими механическими свойствами, в том числе и при динамическом нагружении.

Сочетание высоких механических свойств (прочности, пластичности и ударной вязкости) в чугунах с шаровидным графитом получают путем выбора их необходимого химического состава и способа получения, включая термическую обработку отливок.

Известен чугун [1], содержащий, мас.%:

Углерод 3-4
Кремний 1,5-2,3
Марганец до 0,3
Хром до 0,1
Никель 0,5-2
Магний 0,02-0,06
Висмут 0,0015-0,015
Железо и примеси остальное

Углеродный эквивалент для чугуна должен быть в пределах 3,9-4,6%. Этот чугун после двухступенчатого ферритизирующего отжига (900°С, 2 часа и 720°С, 2 часа) имеет ферритную структуру с равномерно распределенными мелкими графитовыми включениями, что обеспечивает изделиям высокие пластические свойства и ударную вязкость.

Недостатком чугуна являются низкие значения прочностных свойств. Наиболее близким к предлагаемому является чугун [2], содержащий, мас.%:

Углерод 3,28-4,03
Кремний 2,34-3,62
Марганец 0,22-0,53
Медь 1,16-2,34
Молибден 0,21-0,52
Магний 0,02-0,05
Барий 0,03-0,08
РЗМ 0,02-0,06
Железо и примеси остальное.

В качестве примесей допускаются, мас.%: фосфор до 0, 04, сера до 0,02, хром до 0,08.

Для этого чугуна предложен способ получения, состоящий из выплавки в индукционной печи, сфероидизирующего модифицирования в ковше и термической обработки отливок, включающей ступенчатую аустенитизацию (820-830°С, 0,5-1,5 ч и 870-900°С, 0,5-1,5 ч), регулируемое охлаждение до температуры ниже 500°С, термоциклирование в интервале 270-390°С в течение 1,5-3 ч и охлаждение на воздухе. Такой способ получения обеспечивает аусферритную структуру и повышенные механические свойства чугуна.

К недостаткам чугуна и способа его получения относятся нестабильность значений механических свойств чугуна в отливках сложной конфигурации и невозможность применения такого способа термической обработки для деталей с переменной толщиной стенки.

Задачей изобретения является создание в чугуне изделий с разной толщиной стенки дисперсной композиционной структуры, состоящей из упрочненного феррита, бейнита, ограниченного количества аустенита (до 20%) и шаровидного графита.

Технический результат - получение комплекса высоких и стабильных механических свойств чугуна (прочности, пластичности и ударной вязкости) в отливках различной конфигурации, в том числе и с переменной толщиной стенки.

Это достигается тем, что:

1. Чугун, содержащий углерод, кремний, марганец, медь, молибден, магний, РЗМ, примеси и железо, дополнительно содержит никель при следующем соотношении компонентов, мас.%:

Углерод 3,03-3,52
Кремний 3,68-4,20
Марганец 0,21-0,43
Медь 0,61-1,12
Никель 1,29-2,16
Молибден 0,20-0,47
Магний 0,025-0,058
Барий 0,03-0,06
РЗМ 0,02-0,06
Железо и примеси остальное.

В качестве примесей допускаются, мас.%: фосфор до 0,04, сера до 0,02, хром до 0,08.

2. Способ получения чугуна, включающий выплавку в индукционной электропечи, модифицирование в ковше, заливку чугуна в формы и термическую обработку отливок, состоящую из аустенитизации, изотермической закалки и охлаждения на воздухе, отличающийся тем, что выплавляют чугун по п.1, обрабатывая его перед выпуском из печи ферросилицием, обработку в ковше проводят комплексным модификатором Fe-Si-Mg-Ca-Ва-РЗМ, металл заливают в сухие песчано-глинистые формы, а термическую обработку проводят с неполной аустенитизацией при 850-890°С, 1-2 ч, и изотермической закалкой с выдержкой 1,5-2 ч при 320-350°С в ваннах с легкоплавким металлическим расплавом, расплавом соли или 2-3 ч в термической печи с обычной атмосферой.

Изменения в химический состав чугуна введены с целью стабильного получения без отбела отливок с разной толщиной стенки, увеличения прокаливаемости чугуна, упрощения термической обработки отливок различной конфигурации (в том числе и при переменной толщине стенок) и обеспечения необходимых свойств чугуна после термической обработки.

Состав чугуна выбран, исходя из следующих соображений.

В чугуне увеличено содержание кремния, который является основным элементом-графитизатором и способствует получению упрочненной ферритной и бейнитной структуры при термической обработке чугуна. Основное упрочнение феррита при этом обеспечивается за счет его спинодального расслоения. При содержании кремния менее 3,68% спинодальное расслоение феррита происходит в незначительной степени и не обеспечивает достаточное его упрочнение. При увеличении содержания кремния более 4,20% происходит перестаривание феррита с огрублением его субструктуры, что проявляется в снижении упрочняющего эффекта.

Содержание меди в составе чугуна уменьшено в связи с тем, что некоторые ее функции (снижение склонности чугуна к отбелу, увеличение прокаливаемости) выполняются другими компонентами, которые находятся в чугуне в увеличенном количестве (кремний), или дополнительно введены в состав чугуна (никель). В данном чугуне основное назначение меди состоит в дополнительном упрочнении феррита и бейнита за счет выделения дисперсных включений медистой фазы. Для этой цели достаточно содержание меди в принятых пределах. Увеличение содержания меди сверх 1,12% не приводит к дополнительному упрочнению, но удорожает чугун.

Дополнительно в состав чугуна введен никель. Совместно с кремнием и медью он повышает стабильность графитизированной структуры, а совместно с медью и молибденом увеличивает прокаливаемость чугуна и способствует формированию бейнитной и аусферритной структуры, уменьшая влияние конфигурации и толщины стенки отливки на формирование необходимой структуры. При содержании никеля менее 1,29% эффективность его влияния оказывается недостаточной, а при содержании более 2,16% в структуре чугуна увеличивается количество остаточного аустенита, что проявляется в снижении прочностных свойств чугуна.

Принятое содержание углерода обеспечивает необходимые структуру и свойства чугуна. При содержании углерода менее 3,03 мас.% уменьшается склонность чугуна к графитизации и становится возможным образование участков структуры с повышенной твердостью. Если в чугуне содержится более 3,52 мас.% углерода, то в структуре увеличивается количество графита, причем повышается вероятность образования графитных включений неблагоприятной формы (при недостаточной степени сфероидизации) и их локализация в виде спели, что может проявляться в снижении всех механических свойств чугуна.

Содержание остальных компонентов в чугуне и их функциональное назначение не отличаются от прототипа.

Способ получения чугуна включает духстадийную обработку расплава: ферросилицием в печи за 3-5 минут перед выпуском металла в ковш и комплексным измельченным модификатором Fe-Si-Mg-Ca-Ва-РЗМ в разливочном ковше при 1400-1450°С методом "сандвич-процесса". Обработка металла в печи обеспечивает получение в структуре чугуна измельченных графитных включений и повышенную склонность к ферритизации структуры чугуна в литом состоянии. Ковшевая обработка чугуна обеспечивает сфероидизацию графитных включении.

Отливки получают литьем в сухие песчаные формы, что обеспечивает замедленное охлаждение отливок при температурах эвтектоидного превращения в чугуне и способствует ферритизации его структуры. Это позволяет исключить из термической обработки чугуна предварительное проведение ферритизирующего отжига.

Термическая обработка чугуна включает неполную аустенитизацию, которая обеспечивается нагреванием до 850-890°С (т.е. до температур межкритического интервала) и выдержкой в течение 1-3 ч в зависимости от толщины стенки отливки и дальнейшего режима изотермической закалки.

После неполной аустенитизации проводится изотермическая закалка. Закалочной средой могут служить расплавы солей или легкоплавких сплавов (например, свинцовооловянистые расплавы), а также обычная атмосфера в любой термической печи при 320-350°С. Изотермическая выдержка при закалке составляет 1,5-2 ч в ваннах с расплавом соли или легкоплавким металлическим расплавом и 2-3 ч в термической печи с обычной атмосферой. Охлаждение изделий до комнатной температуры проводится на спокойном воздухе.

После такой термической обработки микроструктура чугуна состоит из участков бескарбидного бейнита (аусферрита) и измельченных зерен гетерогенизированного феррита с субструктурой, образованной путем спинодального расслоения и дополнительного старения за счет диспергированной медистой фазы. Такая структура имеет микрокомпозиционный характер с упрочняющими наноразмерными элементами. Этим объясняется высокий уровень всего комплекса механических свойств чугуна.

Плавку чугуна проводили в индукционных тигельных печах емкостью 50 кг с кислой футеровкой. Использовали шихту, состоящую из литейного чугуна, ферросплавов (ферросилиция и ферромолибдена) и отходов меди.

Перед сливом чугуна из печи проводили инокулирующее модифицирование ферросилицием ФС75. Сфероидизирующую обработку чугуна проводили при 1430±10°С в разливочном коше емкостью 50 кг комплексным модификатором, состоящим из измельченной смеси лигатуры типа ЖКМК и силикобария SIBAR22.

Чугун заливали в сухие песчано-глинистые формы с сифонной литниковой системой. Отливали заготовки двух типов: круглые диаметром 30 мм и длиной 300 мм, пластины 80×80×160 мм. Из этих заготовок после их термической обработки вырезали стандартные образцы для механических испытаний.

Химические составы чугунов приведены в табл.1, режимы термической обработки - в табл.2. Результаты механических испытаний приведены в табл.3.

Видно, что предлагаемое сочетание химического состава чугуна и способа его получения обеспечивает по сравнению с прототипом более стабильные значения механических свойств чугуна независимо от сечения отливок. Важно также, что по сравнению с прототипом предлагаемый чугун имеет более низкую твердость, обеспечивающую его хорошую обрабатываемость резанием лезвийным инструментом.

При выходе химического состава чугуна за предлагаемые пределы (сплавы №5 и 6) свойства чугуна существенно ухудшаются. Отклонение способа получения чугуна от п.2 формулы изобретения (например, при термической обработке по режимам А и Г) также приводит к неблагоприятному изменению некоторых свойств чугуна (снижению относительного удлинения и повышению твердости чугуна при обработке по режиму А, снижению прочности и слишком резкому снижению твердости при обработке по режиму Г).

Источники информации

1. Чугун с шаровидным графитом с высокой вязкостью и процесс его получения / Ишихара Ясуоки, Обато Фумио, Сакаи Жун и др. // Патент США №4889687, МКИ С22С 37/04.

2. Чугун и способ термической обработки отливок из него / Сильман Г.И., Камынин В.В., Серпик Л.Г, Полухин М.С. // Патент РФ №2307875, МКИ С22С 37/04. 2007. Бюл. №28.

Таблица 3
Механические свойства чугунов (средние значения)
Режим термической обработки Номер сплава Предел прочности σB, МПа Относительное удлинение δ, % Ударная вязкость КС, Дж/см2 Твердость НВ
А 1 1364 2,1 14,0 311
2 1350 2,2 14,4 311
3 1312 2,0 14,3 321
4 1415 1,5 12,5 341
5 1010 2,5 10,0 355
6 1117 1,8 9,8 341
Б 1 1300 8,5 16,5 207
2 1296 (1178) 8,6 (6,8) 16,5 (11,6) 201
3 1291 7,1 15,0 201
4 1389 5,7 12,3 262
5 925 5,2 10,2 311
6 984 4,8 9,5 277
В 1 1183 12,0 18,0 187
2 1166 12,9 18,8 179
3 1104 12,1 16,8 179
4 1106 10,3 12,0 201
5 990 6,5 9,0 229
6 1012 5,6 8,6 201
Г 1 822 12,1 10,5 143
2 813 11,4 10,8 143
3 916 11,3 10,6 149
4 940 9,7 10,4 149
5 852 7,0 6,5 187
6 894 6,8 5,7 175
Д 1 1280 7,8 18,5 207
2 1280 7,5 19,1 212
3 1286 7,7 18,1 235
4 1312 7,1 15,2 235
5 908 4,9 6,3 262
6 966 4,5 6,0 229
Е (известный) 7(1) 1190 8,0 50 310
7(2) 920 3,0 7,5 255

Значения свойств сплава 2, обработанного по режиму Б, приведенные в скобках, получены для образцов, вырезанных из пластины толщиной 80 мм.

Свойства сплава 7, приведенные под номером 7(1), относятся к образцам, вырезанным из заготовки диаметром 30 мм, а под номером 7(2) - к образцам из пластины толщиной 80 мм. Все остальные значения свойств, приведенные в таблице, получены на образцах, вырезанных из заготовок диаметром 30 мм.

1. Чугун, содержащий углерод, кремний, марганец, медь, молибден, магний, барий, РЗМ, железо и примеси, отличающийся тем, что он дополнительно содержит никель при следующем соотношении компонентов, мас.%:

углерод 3,03-3,52
кремний 3,68-4,20
марганец 0,21-0,43
медь 0,61-1,12
никель 1,29-2,16
молибден 0,20-0,47
магний 0,025-0,058
барий 0,03-0,06
РЗМ 0,02-0,06
железо и примеси остальное

причем в качестве примесей допускаются, мас.%: фосфор до 0,04, сера до 0,02, хром до 0,08.

2. Способ получения чугуна, включающий выплавку в индукционной электропечи, модифицирование в ковше, заливку чугуна в формы и термическую обработку отливок, состоящую из аустенитизации, изотермической закалки и охлаждения на воздухе, отличающийся тем, что выплавляют чугун по п.1, обрабатывают его перед выпуском из печи ферросилицием, обработку в ковше проводят комплексным модификатором Fe-Si-Mg-Ca-Ba-РЗМ, металл заливают в сухие песчано-глинистые формы, а термическую обработку проводят с неполной аустенитизацией при 850-890°С, 1-2 ч и изотермической закалкой с выдержкой 1,5-2 ч при 320-350°С в ваннах с легкоплавким металлическим расплавом или расплавом соли или 2-3 ч в термической печи с обычной атмосферой.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к способам производства чугуна с вермикулярным графитом. .

Изобретение относится к металлургии, а именно к получению ковкого чугуна. .
Изобретение относится к области литейного производства, в частности к износостойким чугунам для производства мелющих шаров размольных мельниц, подвергающихся ударно-абразивному износу, например, при дроблении и размоле вольфрамовых руд.
Изобретение относится к области литейного производства, в частности к износостойким чугунам для производства мелющих шаров размольных мельниц, подвергающихся ударно-абразивному износу.
Изобретение относится к металлургии, в частности к разработке составов высокопрочного чугуна с шаровидным графитом для разностенных сложных отливок. .
Изобретение относится к области литейного производства и, в частности, к износостойким чугунам для производства деталей машин и оборудования, подвергающихся абразивному и ударно-абразивному износу.

Изобретение относится к области литейного производства, в частности к износостойким чугунам для производства деталей машин и оборудования, подвергающихся ударно-абразивному износу.
Изобретение относится к литейному производству, в частности к составам коррозионностойких чугунов с шаровидным графитом. .
Изобретение относится к литейному производству, в частности к составам износостойких чугунов. .
Чугун // 2382106
Изобретение относится к металлургии, а именно к составам чугуна. .

Изобретение относится к технологии термообработки деталей, а именно к поверхностной закалке электрической индукцией, и используется преимущественно при изготовлении износостойких элементов фрикционного гасителя колебаний (ФГК) тележек грузовых вагонов.

Изобретение относится к области термического упрочнения лезвий почвообрабатывающих орудий и может быть использовано в сельскохозяйственном машиностроении. .
Изобретение относится к металлургии, в частности к способу получения чугуна с шаровидным графитом. .

Изобретение относится к разработке скользящих компонентов, применяющихся в компрессорах. .
Изобретение относится к области металлургии. .

Изобретение относится к области металлургии и используется при производстве отливок из серого чугуна. .

Изобретение относится к технологии термической обработки белого чугуна. .

Изобретение относится к области трубопрокатного производства и может быть использовано при изготовлении оправок станов продольной прокатки труб. .
Изобретение относится к области металлургии и может быть использовано для повышения свойств отливок из серого чугуна. .
Изобретение относится к области металлургии и может быть использовано для повышения свойств отливок из серого чугуна. .
Изобретение относится к технологиям, обеспечивающим износостойкость изделий за счет изменения состава и структуры поверхностных слоев этих изделий, и может быть использовано для обработки чугунных изделий, работающих в условиях абразивного, гидроабразивного, коррозионно-механического износа, сухого трения
Наверх