Способ диагностики радиального зазора в шарикоподшипниках



Способ диагностики радиального зазора в шарикоподшипниках
Способ диагностики радиального зазора в шарикоподшипниках
Способ диагностики радиального зазора в шарикоподшипниках

 


Владельцы патента RU 2432560:

Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" (RU)

Изобретение относится к области машиностроения и может быть использовано в технологических процессах виброконтроля и вибродиагностики состояния шарикоподшипников машин, например газотурбинных двигателей. Изобретение направлено на повышение производительности, информативности и качества диагностики величины радиального зазора в условиях вращения и действии осевой нагрузки, что обеспечивается за счет того, что закрепляют на валу внутреннее кольцо испытуемого подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника. При этом измеряют частоты прокатывания шариков по наружной и внутренней дорожкам качения или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению fквн=kвнfвн±fв, где fквн - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, kвн - целое число (1, 2, 3…), fвн - частота прокатывания шариков по внутренней дорожке, fв - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=fвн-fн, где fвн - частота прокатывания шариков по внутренней дорожке, fн - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора. 3 ил.

 

Изобретение относится к области машиностроения и может быть использовано в технологических процессах виброконтроля и вибродиагностики состояния шарикоподшипников машин, например газотурбинных двигателей.

Известен способ контроля состояния подшипников качения, при котором измеряют радиальный зазор в подшипнике с помощью измерительных инструментов (Бейзельман Р.Я., Цыпкин В.В., Перель Л.А. «Подшипники качения». Справочник. - Машиностроение. 1967 г. стр.608).

Недостатком этого способа является его сложность и невозможность контроля радиального зазора в процессе вращения подшипника.

Известен также способ определения радиального зазора в подшипниках (а.с. 1673907, кл. G01М 13/04 от 30.08.91 г.), согласно которому закрепляют на валу внутреннее кольцо, прикладывают к подшипнику переменную по направлению радиальную нагрузку, перед приложением радиальной нагрузки закрепляют жестко относительно внутреннего наружное кольцо, а переменную по направлению радиальную нагрузку изменяют по величине и по времени, затем регистрируют вибрационные шумы подшипника.

Однако этот способ не обладает высокой производительностью и качеством диагностики шарикоподшипников при одновременном действии радиальной и осевой нагрузок.

Известна также схема измерений вибрации шариковых подшипников в условиях контролируемого нагружения осевой силой (Бальмонт В.Б., Варламов Е.Б., Горелик Н.Г. «О структурной вибрации шарикоподшипников». - Машиноведение, 1987 г., №1, стр.91-97).

Внутреннее кольцо испытуемого шарикоподшипника устанавливается с небольшим зазором на оправку, расположенную в свободном от вибрации шпинделе. По наружному кольцу подшипник нагружается осевой силой с помощью узла нагружения, минимально искажающего динамические характеристики свободного подшипника. Нагрузка равномерно распределяется по всем шарикам. Радиальная составляющая вибрации наружного кольца регистрируется с помощью малогабаритного датчика, поджимаемого к кольцу пневматически.

С помощью данной схемы может быть реализован известный способ диагностики зазоров и угла контакта при наличии осевой нагрузки на шарикоподшипник («Приборные шариковые подшипники», Справочник. - М.: Машиностроение, 1981 г., стр.239-240), взятого за прототип. По этому способу в спектре вибрации подшипника измеряют комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты вращения вала и гармоник частоты вращения сепаратора и по полученной величине расчитывают значение радиального зазора.

Недостаток этого способа проявляется в том, что требуются повышенной чувствительностью средства измерения вибрации с повышенной точностью их замера, так как частота вращения сепаратора и ее гармоники слабо изменяются при небольших отклонениях величины зазора от номинальных значений. В справочниках отсутствуют конструктивные параметры подшипника и данные о деформации контактирующих тел качения под действующей нагрузкой.

Технической задачей заявляемого решения является повышение производительности, информативности и качества диагностики величины радиального зазора в шариковом подшипнике в условиях вращения и действии осевой нагрузки.

Технический результат в заявляемом способе диагностики радиального зазора в шарикоподшипниках достигается тем, что закрепляют на валу внутреннее кольцо подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника. При этом измеряют частоты прокатывания шариков по наружной и внутренней дорожкам или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению fквн=kвн·fвн±fв, где fквн - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, kвн - целое число (1, 2, 3…), fвн - частота прокатывания шариков по внутренней дорожке, fв - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=fвн-fн, где fвн - частота прокатывания шариков по внутренней дорожке, fн - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора.

На фиг.1 представлена схема измерения вибрации, принятая в подшипниковой промышленности.

На фиг.2 представлена спектрограмма вибрации подшипника.

На фиг.3 представлена тарировочная зависимость величины сближения частот от радиального зазора для конкретного типа подшипника.

Подшипник подготавливают для измерений путем очистки, смазывания и прокрутки в целях достижения равномерного распределения смазочного материала в подшипнике. Подшипник монтируют на шпинделе для вращения внутреннего кольца. Конструкцией шпинделя с оправкой, применяемой для крепления и приведения во вращение внутреннего кольца подшипника, должно быть предусмотрено, чтобы, кроме передачи вращательного движения, шпиндель представлял бы жесткую базовую систему для оси внутреннего кольца. Передача вибрации между узлом шпинделя с оправкой и внутренним кольцом подшипника в применяемом диапазоне частот должна быть незначительной по сравнению с вибрацией подшипника. Цилиндрическая поверхность оправки, на которой монтируют внутреннее кольцо подшипника, должна обеспечить скользящую посадку в отверстии подшипника.

На наружной поверхности наружного кольца подшипника устанавливают датчик вибрации. Датчик должен быть расположен так, что его положение вдоль оси подшипника должно быть в плоскости, соответствующей середине контактов нагруженной дорожки качения наружного кольца с шариками. Направление оси чувствительности датчика должно быть перпендикулярно оси подшипника.

Осуществляют вращение подшипника с постоянной скоростью.

В процессе вращения к наружному кольцу подшипника прикладывают постоянную осевую нагрузку сначала с одной стороны наружного кольца, и затем повторно с другой стороны наружного кольца.

Радиально-упорные шариковые однорядные подшипники испытывают только в направлении, воспринимающем осевую нагрузку.

Конструкцией системы нагружения, применяемой для приложения нагрузок к наружному кольцу подшипника, должна быть обеспечена возможность свободного вибрирования кольца в радиальных, осевых, угловых и изгибных формах колебаний, в зависимости от типа подшипника.

Искажение формы колец подшипника, вызываемое контактом с элементами механического узла, должно быть незначительным по сравнению с геометрической точностью испытуемого подшипника.

Выполняют узкополосный спектральный анализ сигнала датчика вибрации в диапазоне частот, охватывающем частоты прокатывания шариков по дорожкам качения и/или их нескольких гармоник.

С учетом ожидаемого изменения радиального зазора определяют ориентировочные интервалы частот прокатывания шариков по дорожкам каченич и/или их нескольких гармоник.

Измеряемыми параметрами вибрации являются частота и среднеквадратическое значение виброскорости или среднеквадратическое значение виброускорения дискретных составляющих спектра, преобладающих по амплитуде в ожидаемых интервалах частот прокатывания шариков по дорожкам качения и/или их нескольких гармоник.

О состоянии подшипника судят по величине сближения измеренных частот прокатывания шариков по дорожкам качения и/или их гармоник, а также комбинационных частот, по величине сближения частот судят о состоянии подшипника и величине радиального зазора, а в качестве допустимого значения сближения частот используют настроечные значения, определенные по тарировочной зависимости. Комбинационные частоты используют в том случае, когда составляющие на этих частотах в спектре вибрации выделяются более четко, чем на основной частоте и ее гармониках.

Схема измерений вибрации подшипников, представленная на фиг.1, содержит оправку, расположенную в свободном от вибрации шпинделе 5, на которой установлено на скользящей посадке внутреннее кольцо 4 испытуемого шарикоподшипника. По наружному кольцу 3 подшипник нагружается осевой силой Q с помощью узла нагружения 2, минимально искажающего динамические характеристики свободного подшипника. Нагрузка Q равномерно распределяется по всем шарикам. Радиальная составляющая вибрации наружного кольца регистрируется с помощью малогабаритного датчика 1, поджимаемого к кольцу пневматически. Сигнал датчика 1 подается на блок согласования 6, выход которого соединен с аналого-цифровым устройством 7 обработки и спектрального анализа сигнала и измерения его параметров. В устройстве 7 проводят спектральный анализ сигнала, выделяют и идентифицируют в спектре информативные частоты, измеряют их значения и определяют величину сближения информативных частот.

Способ базируется на известных зависимостях частоты прокатывания шариков по наружной дорожке качения fн и частоты прокатывания шариков по внутренней дорожке качения fвн от числа шариков z, диаметра тела качения d, среднего диаметра подшипника D, угла контакта α и частоты вращения вала fв («Неразрушающий контроль», Справочник, т.7, Книга 2, Вибродиагностика. - Машиностроение, 2005 г., стр.574).

Частота прокатывания шариков по наружному кольцу в случае вращения внутреннего кольца и неподвижном наружном кольце

,

где fн - частота прокатывания шариков по наружной дорожке качения,

fв - частота вращения вала,

D - средний диаметр подшипника,

d - диаметр тела качения,

α - угол контакта.

Частота прокатывания шариков по внутреннему кольцу

,

где fвн - частота прокатывания шариков по внутренней дорожке качения, z - число шариков.

Разность частот Δf=fвн-fн характеризует их сближение и при постоянных условиях испытаний зависит только от угла контакта , где z - число шариков.

В случае наличия радиального зазора угол контакта в результате действия осевой нагрузки изменится. Так угол контакта α в радиальном однорядном шарикоподшипнике в случае предварительного натяга под действием небольшой осевой нагрузки при свободном перемещении в пределах осевой игры зависит от радиального зазора g, радиусов дорожек качения соответственно внутреннего rв и наружного rн колец в направлении, перпендикулярном качению, и диаметра тела качения d (смотри Перель Л.Я., Филатов А.А. «Подшипники качения». Справочник. - Машиностроение, 1992 г., стр.455):

,

где В=(rв+rн-d), а rв - радиус внутренней дорожки качения и rн - радиус наружной дорожки качения.

Поэтому, измеряя сближение частот Δf, можно оценить радиальный зазор.

Способ осуществляется путем контроля частот прокатывания шариков по наружной fн и внутренней fвн дорожкам или их гармоник f и fквн или комбинационных частот, связанных с частотой прокатывания шариков по внутренней дорожке:

f=kнfн,

fквн=kвнfвн±sfв, где kн, kвн и s - целые числа, а также может быть s=0.

Пример спектрограммы вибрации подшипника представлен на фиг.2. Параметры подшипника: d=8 мм, D=35 мм, z=9. Частота вращения вала fв=30 Гц. На спектрограмме выделяются составляющие с частотой прокатывания шариков по наружной дорожке fн=110 Гц и частотой f=195 Гц. Эта частота f есть комбинационная частота f=fвн+fв. Отсюда в данном примере сближение частот прокатывания шариков по внутренней и наружной дорожкам Δf=fвн-fн=55 Гц.

Тарировочная зависимость величины сближения частот от радиального зазора для данного типа подшипника представлена на фиг.3. По ней видно, что в рассмотренном примере величина Δf=fвн-fн=55 Гц соответствует радиальному зазору 0,043 мм.

Способ диагностики радиального зазора в шарикоподшипниках, заключающийся в том, что закрепляют на валу внутреннее кольцо испытуемого подшипника, прикладывают к наружному кольцу постоянную осевую нагрузку, вращают внутреннее кольцо с постоянной скоростью, измеряют и анализируют радиальную вибрацию наружного кольца подшипника, отличающийся тем, что измеряют частоты прокатывания шариков по наружной и внутренней дорожкам качения или их гармоники, а также комбинационные частоты, определяемые путем сложения или вычитания гармоник частоты прокатывания шарика по внутренней дорожке с частотой вращения вала согласно соотношению fквн=kвнfвн±fв, где fквн - комбинационная частота, связанная с частотой прокатывания шариков по внутренней дорожке, kвн - целое число (1, 2, 3…), fвн - частота прокатывания шариков по внутренней дорожке, fв - частота вращения вала, а по величине сближения частот прокатывания шариков по дорожкам Δf=fвн-fн, где fвн - частота прокатывания шариков по внутренней дорожке, fн - частота прокатывания шариков по наружной дорожке, судят о состоянии подшипника и величине радиального зазора.



 

Похожие патенты:

Изобретение относится к устройству индикации неисправностей подшипника, в частности для использования в поверхностях управления воздушного судна, например, в элеронах, закрылках и интерцепторах.

Изобретение относится к машиностроению и может быть использовано, в частности, для определения базовой динамической грузоподъемности (долговечности) подшипниковых узлов машин с шариковыми подшипниками качения.

Изобретение относится к машиностроению и может быть использовано, в частности, для определения базовой динамической грузоподъемности (долговечности) подшипниковых узлов машин с роликовыми подшипниками качения.

Изобретение относится к устройствам для формирования базы данных характерных признаков, свойственных определенным развивающимся дефектам, неисправностям и повреждениям буксового узла колесной пары.

Изобретение относится к машиностроению и подшипниковой промышленности и может быть использовано для диагностики подшипников качения букс подвижного состава железнодорожного транспорта, вагонов метрополитена или вагонов городского рельсового транспорта.

Изобретение относится к измерительной технике и предназначено для испытаний пар трения, например подшипников качения и скольжения. .

Изобретение относится к виброакустической диагностике и может быть использовано для определения люфтов приводов станков. .

Изобретение относится к области машиностроения и может быть использовано в роторных машинах, к которым предъявляются повышенные требования по надежности опорного узла.

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании степени износа шатунных подшипников двигателей внутреннего сгорания (ДВС).

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании двигателей внутреннего сгорания (ДВС)

Изобретение относится к области измерительной техники в машиностроении и направлено на повышение качества сборки шпиндельных узлов металлорежущих станков, что обеспечивается за счет того, что изобретение содержит корпус и установленные в нем вращающийся образцовый шпиндель с двухрядным роликоподшипником

Изобретение относится к роторно-статорным узлам, в которых используются магнитные подшипники и, в частности, к способам тестирования для тестирования узла ротора и вала до изоляции

Изобретение относится к области подшипниковой техники и направлено на точное выявление дефектов работающих подшипников качения на ранней стадии их возникновения, что обеспечивается за счет того, что вибрации работающего подшипника, измеренные в виде временной диаграммы аналогового сигнала волнового процесса, преобразуют в цифровые данные и предварительно фильтруют известным способом

Изобретение относится к контролю и диагностике технического состояния межроторных подшипников (МРРП) двухвальных авиационных газотурбинных двигателей (ГТД) и может быть использовано в авиадвигателестроении для раннего выявления дефектов в процессе изготовления, эксплуатации, технического обслуживания и/или ремонта ГТД

Изобретение относится к области измерительной техники и может быть использовано для контроля состояния новых и бывших в эксплуатации подшипников. Способ заключается в следующем: подготавливают подшипник к сборке в соответствие с регламентированной технологическим процессом процедурой, устанавливают его на стендовое оборудование, имитируют условия и режимы работы в изделии и измеряют нормированное интегральное время микроконтактирования, по которому определяют вид смазки в подшипнике путем его сравнения со значением, соответствующим переходу к граничной смазке, 0 или 1. В случае величины параметра времени микроконтактирования, равным 0 или 1, измеряют среднее электрическое сопротивление, по которому судят о состоянии подшипника. При нахождении величины этого параметра в диапазоне от величины значения перехода к граничной смазке до 1 измеряют обратную этому параметру величину - нормированное интегральное время целостности поверхностных пленок. О состоянии подшипника судят по рассчитываемому относительному коэффициенту смазывающей способности, зависящему от номинальной площади пятна контакта наиболее нагруженного тела качения с кольцом и плотности микронеровностей поверхностей. Технический результат заключается в повышении достоверности контроля состояния подшипников. 1 ил.

Изобретение относится к машине и способу контролирования состояния предохранительного подшипника машины. Способ контролирования состояния предохранительного подшипника (14) машины (12) заключается в том, что предохранительный подшипник (14) улавливает роторный вал (1) машины (12) при выходе из строя магнитного подшипника (6) машины (12). При этом предохранительный подшипник (14) имеет наружное кольцо (3) и расположенное с возможностью вращения относительно наружного кольца (3) внутреннее кольцо (2). Для контроля состояния предохранительного подшипника (14) выключают магнитный подшипник (6) и приводят роторный вал (1) во вращательное движение с заданным ходом движения, причем для этого роторный вал (1) соответственно приводят в движение машиной (12), которая управляется вышестоящим управлением (23), и с помощью датчика (5) измеряют физическую величину (G) предохранительного подшипника (14). Также заявлена соответствующая машина (12) для контролирования состояния предохранительного подшипника (14). Технический результат: обеспечение возможности контролирования состояния установленного в машине (12) предохранительного подшипника (14). 2 н.п. и 20 з.п. ф-лы, 9 ил.

Устройство относится к электроизмерительной технике, в частности к измерению износа подшипниковых узлов погружных электродвигателей, и может быть использовано в народном хозяйстве для бесперебойного водоснабжения. Технический результат заключается в обеспечении возможности осуществлять ступенчатый контроль износа подшипниковых узлов при работающем и отключенном электродвигателе, а также в возможности автоматического отключения насосной установки в момент наступления предельного износа подшипникового узла. Устройство для контроля степени износа подшипниковых узлов погружных электродвигателей содержит соединенные соединительной муфтой электродвигатель и насос, датчик состояния подшипниковых узлов с электрическими подводящими проводами, блок управления и сигнализации. Для осуществления ступенчатого контроля подшипниковых узлов электродвигателя путем контроля осевых и радиальных смещений оси вала электродвигателя дополнительно установлена система управления, включающая закрепленную соосно на соединительной муфте с возможностью перемещения в осевом и радиальном направлениях дисковую муфту, не менее пяти датчиков состояния подшипниковых узлов и не менее пяти изолированных электродов. Электроды электрически связаны с соответствующими датчиками состояния подшипниковых узлов электродвигателя, которые другим концом подключены через регулятор чувствительности и пороговое устройство к блоку управления с сигнальными лампами. 2 ил.

Изобретения относятся к измерительной технике, в частности к области контроля состояния газотурбинных двигателей, и могут быть использованы для контроля вибрационных явлений, появляющихся в газотурбинном двигателе летательного аппарата во время работы. Способ состоит в том, что устанавливают спектр частот вибрационного сигнала, характерного для состояния работы двигателя и его компонентов, используют множество вибрационных сигнатур, каждая из которых соответствует вибрационному явлению, которое появляется во время работы авиационных двигателей того же типа, что и контролируемый, и причиной которого является дефект или ненормальная работа компонента двигателей. При этом в спектре идентифицируют точки кривых, которые отвечают математическим функциям, каждая из которых определяет вибрационную сигнатуру, для каждой идентифицированной кривой, соответствующей дефекту компонентов двигателя, анализируют амплитуду, связанную с точками кривой, по отношению к предопределенным значениям амплитуды, соответствующим степени серьезности дефекта, и при превышении значения амплитуды или при обнаружении ненормальной работы передают сообщение, связанное с вибрационной сигнатурой. Система содержит средства получения вибрационного сигнала, средства установления спектра частот вибрационного сигнала, базу данных, содержащую множество вибрационных сигнатур, средства идентификации в спектре частот вибрационной сигнатуры, средства анализа амплитуды и средства передачи сообщения, связанного с вибрационной сигнатурой. Технический результат заключается в улучшении качества контроля за состоянием газотурбинного двигателя. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для диагностирования машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями, т.е. в условиях априорной неопределенности относительно предельно допускаемых значений вибрации машин. Заявленный способ заключается в измерении вибрации в информативной точке корпуса механизма машины, выделении составляющей вибрации, присущей диагностируемому механизму, определении безразмерного инварианта вибросостояния механизма, контроле его параметров, по которым судят о техническом состоянии механизма, при этом безразмерный инвариант представляют характеристической функцией вибрации механизма, пошагово задают величину ее параметра или модуля, определяют текущее значение модуля или параметра, контролируют тенденцию их уменьшения к нулю при деградации механизма при фиксированном значении модуля или параметра и по диапазону текущих значений параметра или модуля характеристической функции вибрации оценивают техническое состояние механизма. Технический результат, достигаемый от реализации заявленного способа, заключается в повышении достоверности результатов диагностики при одновременном упрощении диагностической аппаратуры, в снижении продолжительности диагностирования, обеспечение простоты и точности реализации способа. 2 з.п. ф-лы, 2 табл., 3 ил.
Наверх