Способ приготовления катализатора для конверсии природного газа

Изобретение относится к технологии приготовления катализаторов для конверсии природного газа и может быть использовано в химической промышленности, например, для получения технического водорода. Описан способ приготовления катализатора для конверсии природного газа, включающий обработку оксида алюминия в присутствии гидроксида калия, получение однородной пасты, формование из нее гранул, их провяливание, высушивание и прокаливание, пропитку полученного носителя в растворах азотнокислых солей никеля и алюминия с последующим высушиванием и прокаливанием, при этом осуществляют совместное измельчение и перемешивание оксида алюминия с твердым гидроксидом калия в течение 45-60 мин с последующим затворением измельченной смеси водой, прокаливание гранул перед пропиткой носителя проводят при температуре 1200-1250°С в течение 4-6 ч, а гидроксид калия используют в количестве 2-5% от массы исходного сырья. Технический эффект - снижение энергоемкости способа и увеличение активности готового катализатора при температуре, отвечающей началу процесса паровой конверсии. 1 табл.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к технологии приготовления катализаторов для конверсии природного газа и может быть использовано в химической промышленности, например, для получения технического водорода.

УРОВЕНЬ ТЕХНИКИ

Известен способ приготовления катализатора для конверсии углеводородов, в частности природного газа, путем перемешивания размолотого глинозема со связующей добавкой - 20%-й азотной кислотой, формования из полученной массы гранул разнообразной конфигурации, провяливания этих гранул в токе подогретого воздуха, высушивания и прокаливания при 1400°С, охлаждения, после чего полученный носитель 3-4 раза пропитывают в растворах нитратов никеля и алюминия и сушат при 300°С, а затем прокаливают при 450-500°С [А.с. СССР №526381, В01J 35/02. Опубл. в БИ, 1976, №32]. Однако такой способ приготовления катализатора является достаточно энергоемким, а полученный катализатор характеризуется малой термостойкостью (коэффициент термостойкости равен 20-25), высоким гидравлическим сопротивлением слоя и недостаточной активностью (при 800°С количество остаточного метана в конвертированном газе составляет 0,5-0,7 об.%).

С целью повышения термостабильности и активности катализатора используют способ приготовления, при котором измельченный оксид алюминия смешивают с функциональными (доломит, нефтяной кокс) и связующими добавками (30%-й раствор азотной кислоты). Из пасты, образованной при смешении, формуют гранулы, которые провяливают и прокаливают при 1400°С [А.с. СССР №411706, В01J 37/08, В01J 37/02. Опубл. в БИ, 1984, №2], после чего полученный носитель подвергают троекратной пропитке в растворах азотнокислых солей никеля и алюминия с сушкой и прокаливанием после каждой пропитки до полного разложения нитратов. Остаточное содержание метана в процессе конверсии с водяным паром при 800°С при использовании готового катализатора (техническое название ГИАП-8) находится в пределах 0,3-0,6 об.%.

Недостатками аналога являются сложность и энергоемкость способа приготовления катализатора, поскольку прокаливание гранул проводят при повышенной температуре (1400°С), а полученный носитель необходимо пропитывать и прокаливать троекратно. Кроме того, в качестве связующей добавки используют 30%-й раствор азотной кислоты, что влечет за собой увеличение объема выбросов оксидов азота в атмосферу и снижает экологичность производства.

Наиболее близким техническим решением, т.е. прототипом, является способ приготовления катализатора для конверсии природного газа [А.с. СССР №743716, В01J 37/02, В01J 23/76, С01В 2/10. Опубл. в БИ, 1980, №24] путем перемешивания оксида алюминия со связующей добавкой - 20%-й азотной кислотой до получения однородной пасты, формования из пасты гранул, их провяливания, высушивания и прокаливания при 1400°С, двукратной пропитки полученного носителя в растворах азотнокислых солей никеля и алюминия и дополнительной его обработки 5-10%-м пропиточным раствором гидроксида калия с сушкой и прокаливанием катализаторной массы после каждой пропитки. Дополнительное использование пропиточного раствора гидроксида калия в сотни раз увеличивает скорости обратных реакций превращения углерода в газообразные продукты и уменьшает количество углеродных отложений на катализаторе (техническое название ГИАП-3), препятствуя его разрушению.

Недостатками прототипа являются значительная энергоемкость способа приготовления катализатора, поскольку прокаливание гранул осуществляют при повышенной температуре (1400°С) и нагрев катализаторной массы до температуры 450-500°С проводят троекратно, после каждой пропитки, а также малая активность готового катализатора при температуре 500°С, отвечающей началу процесса паровой конверсии природного газа в промышленном реакторе. Кроме того, использование 20%-го раствора азотной кислоты в качестве связующей добавки для получения однородной пасты влечет за собой выбросы оксидов азота в атмосферу, что снижает экологичность производства.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачей изобретения является снижение энергоемкости способа приготовления катализатора для конверсии природного газа, повышение экологичности производства и увеличение активности готового катализатора при температуре, отвечающей началу процесса паровой конверсии.

Поставленная задача решена тем, что способ приготовления катализатора для конверсии природного газа включает обработку оксида алюминия в присутствии гидроксида калия, получение однородной пасты, формование из нее гранул, их провяливание, высушивание и прокаливание, пропитку полученного носителя в растворах азотнокислых солей никеля и алюминия с последующим высушиванием и прокаливанием, при этом осуществляют совместное измельчение и перемешивание оксида алюминия с твердым гидроксидом калия в течение 45-60 мин с последующим затворением измельченной смеси водой, прокаливание гранул перед пропиткой носителя проводят при температуре 1200-1250°С в течение 4-6 ч, а гидроксид калия используют в количестве 2-5% от массы исходного сырья.

Исходный оксид алюминия согласно изобретению представлен кристаллическим гигроскопичным порошком глинозема (ГОСТ 30558-98, марки Г-00) белого цвета; содержание основного вещества Аl2О3 - 98,3%, SiO2 - не более 0,02%, Fе2О3 - не более 0,03%, оксидов титана, ванадия, хрома и марганца (в сумме) - 0,01%, ZnO - не более 0,01%, Р2O5 - не более 0,002%, ионов щелочных металлов - не более 0,4%, потери при прокаливании - остальное.

Гидроксид калия (технический гидрат окиси калия, ГОСТ 9285-78, марки «твердый», высшего сорта) представляет собой чешуйки серого цвета с содержанием едких щелочей (в пересчете на КОН) не менее 95,0%, углекислого калия - не более 1,4%, хлоридов - не более 0,7%, сульфатов - не более 0,025%, нитратов и нитритов (в пересчете на азот) - не более 0,003%, хлорноватокислого калия - не более 0,1%, железа - не более 0,03%, кремния - не более 0,01%, натрия (в пересчете на щелочь) - не более 1,5%, кальция - не более 0,01%, алюминия - не более 0,003%.

Для приготовления пропиточного раствора используют нитрат никеля (никель азотнокислый, ГОСТ 4055-78, марки «ч») - бесцветные гигроскопичные кристаллы с содержанием основного вещества не менее 98%, нерастворимых в воде веществ - не более 0,005%, сульфатов - не более 0,010%, хлоридов - не более 0,003%, железа - не более 0,001%, кобальта - не более 0,020%, меди - не более 0,005%, цинка - не более 0,002%, щелочных металлов - не более 0,080%.

Для приготовления пропиточного раствора используют нитрат алюминия (алюминий азотнокислый, ГОСТ 3757-75, марки «ч») - бесцветные гигроскопичные кристаллы с содержанием основного вещества не менее 97%, нерастворимых в воде веществ - не более 0,020%, сульфатов - не более 0,020%, хлоридов - не более 0,005%, железа - не более 0,010%, тяжелых металлов (свинца) - не более 0,001%.

СВЕДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Пример 1. 100 кг глинозема и 2 кг твердого гидроксида калия совместно измельчают и смешивают в вибромельнице в течение 45 мин, после чего сухую измельченную смесь подают в смеситель, где затворяют водой, взятой в количестве 25,5 л, и перемешивают до получения однородной пластичной пасты. Из полученной пасты на шнек-прессе формуют гранулы носителя, которые провяливают 12 ч в токе подогретого (до 30°С) воздуха, сушат при температуре 130°С, прокаливают при 1200°С в течение 4 ч, затем охлаждают воздухом до 50°С и загружают в аппарат, куда подают 130 л смеси 30%-го раствора нитрата никеля и 10%-го раствора нитрата алюминия (растворы берут в объемном соотношении 1:1), выдерживают носитель в пропиточном растворе в течение 30 мин. Жидкую фазу откачивают в сборник, а через катализатор в течение 1 ч пропускают дымовые газы с температурой 120°С. Температуру повышают до 450°С, выдерживают при ней в течение 2 ч, после чего операции пропитки носителя, сушки и прокаливания катализаторной массы повторяют еще один раз с целью полного разложения нитратов. Получают готовый катализатор для конверсии природного газа.

Пример 2. 100 кг глинозема и 5 кг твердого гидроксида калия совместно измельчают и смешивают в вибромельнице в течение 60 мин, после чего сухую измельченную смесь подают в смеситель, где затворяют водой, взятой в количестве 31,5 л, и перемешивают до получения однородной пластичной пасты. Из полученной пасты на шнек-прессе формуют гранулы носителя, которые провяливают 10 ч в токе подогретого (до 40°С) воздуха, сушат при температуре 150°С, прокаливают при 1250°С в течение 6 ч, затем охлаждают воздухом до 70°С и загружают в аппарат, куда подают 140 л смеси 30%-го раствора нитрата никеля и 10%-го раствора нитрата алюминия (растворы берут в объемном соотношении 1:1), выдерживают носитель в пропиточном растворе в течение 15 мин. Жидкую фазу откачивают в сборник, а через катализатор в течение 1 ч пропускают дымовые газы с температурой 100°С. Температуру повышают до 450°С, выдерживают при ней 2 ч, после чего операции пропитки носителя, сушки и прокаливания катализаторной массы повторяют еще один раз с целью полного разложения нитратов. Получают готовый катализатор для конверсии природного газа.

Испытания активности катализаторов, приготовленных по примерам 1, 2 и по прототипу, проводили при 500°С и 800°С, объемной скорости 6000 ч-1 и соотношении пар:газ=2:1. Данные по активности готовых катализаторов представлены в таблице и выражены в объемных процентах остаточного метана в конвертированном газе.

Предлагаемый способ приготовления катализатора для конверсии природного газа отличается пониженной энергоемкостью.

Таблица
Пример Состав шихты для приготовления носителя Число пропиток носителя Остаточное содержание метана (об.%) в процессе конверсии с водяным паром при различной температуре
500°С 800°С
1 Аl2O3, 2 мас.% КОН (тв.) 2 24,7 0,3
2 Аl2O3, 5 мас.% КОН (тв.) 2 33,1 0,3
Прототип Аl2O3 (ГИАП-3) 3 35,0 0,3

так как позволяет снизить температуру прокаливания гранул с 1400°С до 1200-1250°С и сократить число пропиток носителя с трех до двух. Кроме того, на стадии получения носителя отпадает необходимость применять растворы азотной кислоты, и ввиду отсутствия выбросов оксидов азота в атмосферу достигается повышение экологичности производства.

Из табличных данных видно, что использование предлагаемого изобретения обеспечивает по сравнению с прототипом повышение на 5,4-29,4% активности готового катализатора при температуре 500°С, отвечающей началу процесса паровой конверсии природного газа в промышленном реакторе.

Также установлено, что полученный катализатор не уступает известным образцам по устойчивости к зауглероживанию, активности при 800°С и термостойкости (коэффициент термостойкости ≥100).

Способ приготовления катализатора для конверсии природного газа, включающий обработку оксида алюминия в присутствии гидроксида калия, получение однородной пасты, формование из нее гранул, их провяливание, высушивание и прокаливание, пропитку полученного носителя в растворах азотнокислых солей никеля и алюминия с последующим высушиванием и прокаливанием, отличающийся тем, что осуществляют совместное измельчение и перемешивание оксида алюминия с твердым гидроксидом калия в течение 45-60 мин с последующим затворением измельченной смеси водой, прокаливание гранул перед пропиткой носителя проводят при температуре 1200-1250°С в течение 4-6 ч, а гидроксид калия используют в количестве 2-5% от массы исходного сырья.



 

Похожие патенты:

Изобретение относится к катализаторам получения синтез-газа. .
Изобретение относится к технологии приготовления катализаторов для конверсии углеводородов и может быть использовано в химической промышленности, например, для получения технического водорода из природного газа и технологических газов, необходимых в синтезе аммиака и метанола.

Изобретение относится к области химии и может быть использовано при получении водорода. .

Изобретение относится к области химии и может быть использовано для получения водорода и серы. .

Изобретение относится к области химии и может быть использовано для получения водорода и серы. .

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии метанола с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов различного назначения.

Изобретение относится к способу пуска системы синтеза жидкого топлива, имеющей реактор десульфуризации, который производит гидрирование и десульфуризацию углеводородного сырьевого материала, риформинг-аппарат, который преобразует углеводородный сырьевой материал для получения синтез-газа, включающего газообразный монооксид углерода и газообразный водород в качестве основных компонентов, реактор Фишера-Тропша, который синтезирует жидкие углеводороды из газообразного монооксида углерода и газообразного водорода, содержащихся в синтез-газе, и реактор гидрирования, который производит гидрирование жидких углеводородов, синтезированных в реакторе Фишера-Тропша, при котором: отделяют часть газообразного водорода, содержащегося в синтез-газе, полученном в риформинг-аппарате, от синтез-газа при нормальном функционировании системы синтеза жидкого топлива; хранят часть отделенного газообразного водорода; и подают газообразный водород, накопленный в устройстве для хранения водорода, при запуске системы синтеза жидкого топлива, сначала в реактор гидрирования, перед пуском риформинг-аппарата, а затем в реактор десульфуризации, когда риформинг-аппарат запускается.

Изобретение относится к области химии и может быть использовано для разделения газов. .

Изобретение относится к способу получения продукта синтеза Фишера-Тропша из газообразной смеси углеводородов, содержащей метан, этан и, необязательно, углеводороды с более высоким числом атомов углерода, в которой содержание метана составляет по меньшей мере 60 об.%, путем осуществления следующих стадий: (а) адиабатический предварительный риформинг углеводородной смеси в присутствии катализатора риформинга, содержащего оксидный материал носителя и металл, который выбирают из группы, состоящей из Pt, Ni, Ru, Ir, Pd и Со, с целью превращения этана и необязательных углеводородов с более высоким числом атомов углерода в метан, диоксид углерода и водород, (b) нагревание газообразной смеси, полученной на стадии (а), до температуры выше, чем 650°С, (с) осуществление некаталитического неполного окисления путем введения в контакт нагретой смеси со стадии (b) с источником кислорода в реакторной горелке, с образованием выходящего из реактора потока, имеющего температуру между 1100 и 1500°С, (d) осуществление синтеза Фишера-Тропша с использованием в качестве сырья газа, содержащего водород и монооксид углерода, который получен на стадии (с) и (е) где продукт синтеза, полученный на стадии (d), разделяют на относительно легкий поток и относительно тяжелый поток, причем относительно тяжелый поток содержит продукт синтеза Фишера-Тропша, а относительно легкий поток содержит непревращенный синтез-газ, инертные вещества, диоксид углерода и C1 -С3 углеводороды, и где первую часть легкого потока рециркулируют на стадию (а) для того, чтобы подвергнуть ее предварительному риформингу, и где вторую часть легкого потока рециркулируют в реакторную горелку стадии (с) для того, чтобы подвергнуть ее неполному окислению, и где температуру на стадии (а) регулируют, устанавливая количество легкого потока, которое рециркулируют на стадию (а).

Изобретение относится к способу импульсного потока для обессеривания циркулирующего водорода и к устройству для осуществления этого способа. .
Изобретение относится к технологии приготовления катализаторов для конверсии углеводородов и может быть использовано в химической промышленности, например, для получения технического водорода из природного газа и технологических газов, необходимых в синтезе аммиака и метанола.
Изобретение относится к способам получения катализатора полимеризации бутадиена и сополимеризации бутадиена с изопреном и может найти применение в промышленности синтетических каучуков при производстве цис-1,4-полидиенов.

Изобретение относится к области катализаторов. .

Изобретение относится к катализаторам крекинга тяжелого сырья. .
Изобретение относится к способу получения высокоактивного катализатора (со)полимеризации бутадиена. .

Изобретение относится к способам получения катализаторов жидкофазного окислительного крекинга и их использованию. .
Изобретение относится к способам получения эфира уксусной кислоты (метилацетата) путем карбонилирования диметилового эфира в газовой фазе в присутствии катализатора и может найти применение в химической промышленности.
Изобретение относится к технологии приготовления катализаторов для конверсии углеводородов и может быть использовано в химической промышленности, например, для получения технического водорода из природного газа и технологических газов, необходимых в синтезе аммиака и метанола.
Наверх