Способ определения границ фазовых переходов при перлитном превращении



Способ определения границ фазовых переходов при перлитном превращении
Способ определения границ фазовых переходов при перлитном превращении
G01N29 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)
C21D1/55 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)
C21D1/04 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2433190:

Государственное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ГОУВПО "КнАГТУ") (RU)

Изобретение относится к области акустических методов контроля свойств металлов. Для повышения производительности и точности определения границ фазовых переходов при перлитном превращении определение критических точек распада аустенита в сталях осуществляют методом акустической эмиссии (АЭ) путем измерения параметров акустической эмиссии контрольных образцов из исследуемого металла в процессе их охлаждения. Образцы нагревают выше температуры образования мартенсита, выдерживают при этой температуре и охлаждают с заданной скоростью. Во время охлаждения измеряют интенсивность сигналов АЭ. Моменты начала выделения карбидов из аустенита и окончания перлитного превращения определяют как моменты резкого изменения интенсивности АЭ сигналов - роста интенсивности в начале выделения карбидов и спада интенсивности в критической точке перлитного превращения. 2 ил.

 

Изобретение относится к машиностроению, преимущественно к термической обработке металлов, и может использоваться при контроле параметров сталей акустическими методами.

Известен изотермический метод исследования (Попов А.А., Попова А.Е. Изотермические и термокинетические диаграммы распада переохлажденного аустенита. - Свердловск: МАШГИЗ, 1961. - С.13), заключающийся в нагреве образцов изучаемой стали до любой температуры, превышающей температуру образования аустенита, выдержке при этой температуре, быстрого переохлаждения до требуемой субкритической температуры, изотермической выдержке при этой температуре в течение заданного времени и дальнейшее быстрое охлаждение до комнатной температуры. Развитие перлитного превращения осуществляется структурным, дюрометрическим (по изменению твердости), магнитными или дилятометрическим методами. Этот способ имеет ряд недостатков. Так структурный и дюрометрический методы не позволяют исследовать кинетику изотермического распада аустенита, характеризуются высокой трудоемкостью и низкой точностью исследования низкотемпературного превращения, когда продукты распада аустенита по структуре и свойствам сильно похожи на мартенсит. Дилятометрический метод не позволяет наблюдать процессы выделения карбидов.

Наиболее близким к предлагаемому способу по технической сущности является магнитометрический метод (Попов А.А., Попова А.Е. Изотермические и термокинетические диаграммы распада переохлажденного аустенита. - Свердловск: МАШГИЗ, 1961. - С.15-18), включающий нагрев контрольного образца до температуры образования аустенита, выдержку при этой температуре, быстрое охлаждение до требуемой температуры и изотермическую выдержку при этой температуре, во время которой контролируются магнитные свойства образца. О степени превращения аустенита в перлит судят по изменению магнитных свойств образца. Этот способ позволяет наблюдать кинетику процесса распада аустенита, но имеет ряд недостатков. Способ неприменим для температур выше точки Кюри и характеризуется низкой точностью при температурах ниже точки Кюри, но близких к ней.

Для устранения указанных недостатков предлагается способ определения фазовых переходов при помощи анализа изменения интенсивности сигналов акустической эмиссии.

Указанный технический результат обеспечивается заявляемым способом определения границ фазовых переходов при перлитном превращении в сталях, включающий нагрев образца выше температуры образования аустенита, выдержке при температуре нагрева, охлаждение образца с заданной скоростью, при этом границы фазовых переходов определяют по критическим точкам распада аустенита по изменению интенсивности сигналов акустической эмиссии.

Пример конкретного выполнения способа определения критических точек распада аустенита в сталях методом акустической эмиссии. Предлагаемый способ был реализован при определении точек Ar1 (начала выделения карбидов) и Ar3 (завершения перлитного превращения) для конструкционной стали 5. Контрольные образцы сечением 2×15 мм нагревались до температуры 950°С и выдерживались при этой температуре в течение 5 мин. После этого образцы охлаждались со средней скоростью 3°С/с до температуры 20°С на спокойном воздухе. На фиг.1 представлена диаграмма охлаждения образцов, совмещенная с диаграммой изотермического распада переохлажденного аустенита (точки Ar1 и Ar3 определялись как точки пересечения кривой изменения температуры образца с кривыми, соответствующими началу выделения карбидов и завершения перлитного превращения). В процессе охлаждения контролировалась интенсивность сигналов АЭ (фиг.2). Точки Ar3 и Ar1 определялись как моменты изменения интенсивности АЭ сигналов - моменты времени 29 с и 98 с (см. фиг.2). Эти моменты времени соответствуют температурам 780°С и 670°С.

Предлагаемый способ позволяет более точно определять критические точки распада аустенита в реальном времени без ограничений по температурам испытаний и по магнитным свойствам материалов.

Способ определения границ фазовых переходов при перлитном превращении в сталях, включающий нагрев образца выше температуры образования аустенита, выдержку при температуре нагрева, охлаждение образца с заданной скоростью, при этом границы фазовых переходов определяют по критическим точкам распада аустенита по изменению интенсивности сигналов акустической эмиссии.



 

Похожие патенты:

Изобретение относится к неразрушающему контролю и может быть использовано для диагностики сосудов, работающих под давлением, методом акустической эмиссии. .

Изобретение относится к кампанологии (колоколоведению - науке о колоколах) и имеет целью определение возраста наиболее ценных для истории колоколов. .

Изобретение относится к области определения одной из основных характеристик строительных материалов - коэффициента их звукопоглощения, и может быть использовано как для материалов, не обладающих резонансным звукопоглощением, так и для материалов с выраженными резонансными звукопоглощающими свойствами.

Изобретение относится к области ультразвукового контроля и может быть использовано для измерения шероховатости поверхности трубы. .

Изобретение относится к кампанологии (колоколоведению - науке о колоколах) и имеет целью определение возраста наиболее ценных для истории колоколов. .

Изобретение относится к области ультразвуковой дефектоскопии и касается конструкции наклонных пьезопреобразователей (ПП). .

Изобретение относится к области черной металлургии, а именно к термической обработке крупногабаритных кованых заготовок типа обечаек для корпусов нефтехимических реакторов глубокой переработки нефти и другого крупногабаритного нефтехимического оборудования.

Изобретение относится к способу обработки поверхности металлов плазменной струей и может быть использовано в машиностроении, коммунальном хозяйстве, строительстве, ювелирном и зубопротезном деле, а также в бытовых условиях для сварки, резки, наплавки и закалки металлов.

Изобретение относится к технологии изготовления и ремонта деталей машин и может быть использовано в машиностроении и ремонтом производстве. .

Изобретение относится к области черной металлургии, а именно к способам нагрева заготовок из сталей различного химического состава на сортовых и проволочных станах.

Изобретение относится к способу отжига холоднокатаных полос из низкоуглеродистых сталей, используемых в автомобильной промышленности. .

Изобретение относится к способу отжига холоднокатаных полос из низкоуглеродистых сталей, используемых в автомобильной промышленности. .

Изобретение относится к металлургии, а именно к термомагнитной обработке магнитомягких материалов. .
Изобретение относится к машиностроению и термической обработке металлов и может быть использовано при производстве новых и ремонте старых железнодорожных колес. .

Изобретение относится к области индукционного нагрева. .

Изобретение относится к устройству для газопламенной обработки образцов материалов путем высокоинтенсивного и высокотемпературного их нагрева и может быть применено при проведении испытаний на прочность и стойкость при повышенных более 1000°C температурах и при нагреве образцов со скоростью 30 50 град/с, т.е.

Изобретение относится к области черной металлургии, а именно к термической обработке крупногабаритных кованых заготовок типа обечаек для корпусов нефтехимических реакторов глубокой переработки нефти и другого крупногабаритного нефтехимического оборудования.
Наверх