Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы



Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы
Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы
Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы
Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы
Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы
Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы
Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы

 


Владельцы патента RU 2433193:

Государственное образовательное учреждение Высшего профессионального образования Липецкий государственный технический университет (ГОУ ВПО ЛГТУ) (RU)

Изобретение относится к оборудованию для термической обработки изделий шарообразной формы, в частности в массовых производствах мелющих тел, шариков подшипников качения и клапанов в гидравлических системах. Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы содержит расходный бункер, снабженный механизмом перемещения его в горизонтальной и вертикальной плоскостях, подбункерный питатель дискретного действия, подающий желоб от питателя к индуктору, снабженный шарнирными и телескопическим сочленениями, индуктирующий провод, навитый вокруг направляющего профиля, изогнутого в пространственную спираль с вертикальной осью симметрии, при этом индуктирующий провод навит вокруг направляющего профиля кольцевого или полукольцевого сечения, изогнутого в фасонную спираль с переменной кривизной витков, вписанную в поверхность однополостного гиперболоида или сходную с ней поверхность второго порядка. Техническим результатом является исключение проскальзывания и верчения шаров при скатывании по спиральному направляющему профилю. 7 ил.

 

Изобретение относится к оборудованию для термической обработки изделий шарообразной формы, в частности в массовых производствах мелющих тел, шариков подшипников качения и клапанов в гидравлических системах, в том числе высокоизносостойких шариков в запорных клапанах глубинных насосов для нефтедобычи и др.

Известна установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы, содержащая, последовательно, расходный бункер, снабженный механизмом перемещения его в горизонтальной и вертикальной плоскостях, подбункерный питатель, задающий желоб от питателя к индуктору, снабженный шарнирными и телескопическим сочленениями, индуктирующий провод, навитый вокруг направляющего профиля в виде желоба корытообразного U-сечения, изогнутого в цилиндрическую винтовую спираль с вертикальной осью симметрии (патент №2316603, БИ №4, 2008 г.), или в фасонную спираль с переменной кривизной витков, вписанную в поверхность однополостного гиперболоида, либо в другую поверхность второго порядка (патент №2370550, БИ №29, 2009 г.).

Авторы обоих упомянутых изобретений-аналогов решают техническую задачу достижения искомой симметричности нагрева, основываясь на идее непрерывного изменения направления осей собственного вращения шаров при движении в спиральных индукторах с перемещением положения «околополюсных» и «экваториальных» относительно встречного магнитного потока, поверхностей на 90° (т.е. меняя их местами).

Общим недостатком указанных двух изобретений (патенты №2316603 и №2370550) является конструкция направляющего профиля для скатывания внутри индукторов нагреваемых изделий в виде желобов корытообразного -сечения, исключающая возможность свободного качения шаров без проскальзывания и верчения.

Неизбежность проскальзывания с верчением предопределена одновременным и непрерывным динамическим взаимодействием скатывающихся шаров с двумя взаимно перпендикулярными плоскими поверхностями корыта - беговой дорожки и наружной его стенки. При этом побуждающие к повороту суммированного направления оси собственного вращения шара моменты сил трения качения по указанным поверхностям разнонаправлены (90°).

Комплексный и изменчивый характер сил трения, суммировано действующих на пути движения шара по всей криволинейной длине направляющего желоба с -образной конфигурацией сечения (трения качения по беговой дорожке и обкатывания вертикальной стенки, трения скольжения и верчения по тем же поверхностям), настолько осложняет проведение необходимых предпроектных расчетно-теоретических обоснований геометрических параметров такого термического оборудования, обеспечивающих симметричный индукционный нагрев изделий шарообразной формы, что возможность практического использования этих механико-математических исследований для проектирования представляется весьма неопределенной.

Технической задачей изобретения является исключение проскальзывания и верчения нагреваемых изделий при их движении по направляющему профилю.

Для достижения этого технического результата в установке непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы, содержащей расходный бункер, снабженный механизмом перемещения его в горизонтальной и вертикальной плоскостях, подбункерный питатель дискретного действия, задающий желоб от питателя к индуктору, снабженный шарнирными и телескопическим сочленениями, индуктирующий провод, навитый вокруг направляющего профиля, изогнутого в пространственную спираль с вертикальной осью симметрии, индуктирующий провод навит вокруг направляющего профиля кольцевого или полукольцевого сечения, изогнутого в фасонную спираль с переменной кривизной витков, вписанную в поверхность однополостного гиперболоида или другую поверхность второго порядка.

Предлагаемое техническое решение в предпочтительном варианте спирали, вписанной в поверхность однополостного гиперболоида (двойной поворот направления оси вращения: горизонт-90°-горизонт), иллюстрируется фиг.1 - главный вид; фиг.2 - вид А на фиг.1 на n-й (эн-ный) виток направляющего профиля выше фокальной плоскости в частично раскрытом виде; фиг.3 - сечения А-А на фиг.1 по прямым участкам индуктора на входе и выходе шаров; фиг.4 - сечение Б-Б на фиг.2 (промежуточное положение); фиг.5 - сечение В-В на фиг.2.

Спецификация к фиг.1, 2, 3, 4, 5:

1 - расходный бункер;

2 - механизм перемещения расходного бункера в вертикальной и горизонтальной плоскостях;

3 - подбункерный питатель дискретного действия;

4 - подающий желоб;

4-1, 4-2 - шарнирные сочленения;

4-3 - телескопическое сочленение;

5 - индуктирующий провод;

6 - прямой участок направляющего профиля на входе шаров в индуктор;

7 - направляющий профиль кольцевого или полукольцевого сечения, изогнутый в фасонную спираль, вписанную в поверхность однополостного гиперболоида (или сходную с ней);

8 - прямой участок направляющего профиля на выходе шаров из индуктора;

9 - условная пространственная траектория выкатывания шаров на другую спиральную орбиту под воздействием возросшей центробежной силы;

F - фокусы образующих гиперболоидной поверхности.

Из фиг.3, 4, 5 видно, что на внутренней торообразной поверхности трубы можно сколько угодно выделить желобчатых сегментов криволинейной протяженности, пригодных для самоустанавливающегося местоположения шаров, при условии приемлемого соотношения размеров шара d и внутреннего диаметра D кольцевого сечения направляющего профиля (примерно ). Такими функциональными сегментами в предлагаемом направляющем профиле являются:

на фиг.3 - в нижней части по оси Y (беговая дорожка по малой спиральной орбите);

на фиг.5 - сегмент по оси X, дальний от оси симметрии спирали направляющего профиля (поверхность обкатывания под воздействием центробежной силы по увеличенной орбите).

На фиг.2 показана на некоем n-ном витке условная пространственная траектория 9 от п.«а» до п.«б» выкатывания шара в желобчатый сегмент по оси Х (фиг.4 и 5). Это траектория свободного гипоциклоидного качения шара по внутренней поверхности изогнутой в спираль направляющей трубы в нижней четверти ее сечения м/о Х и Y под комплексным воздействием взаимно перпендикулярных сил тяжести и центробежной с непрерывным стереометрическим (трехмерным) суммированием изменения направления оси собственного вращения шара, завершающегося искомым ее поворотом на 90° от исходного горизонтального направления без проскальзывания, ибо предложенным техническим решением исключаются причины возникновения такого явления. На фиг.3 и 5 иллюстрируется разделение местоположения шаров в поле таких сечений на угол 90° относительно центра окружности сечения от горизонтального направления оси собственного вращения шара до повернутого на 90°. Ниже фокальной плоскости на i-м витке с ослаблением центробежной силы (уменьшение кривизны спирали) произойдет скатывание шара по возвратной траектории в желобчатый сегмент по оси Y малой орбиты с восстановлением горизонтального направления оси вращения.

Условные обозначения для выведения условия симметричного индукционного нагрева шаров в предлагаемой установке:

tгП - суммарное время движения шара с горизонтальным направлением оси вращения по прямым участкам индуктора (поз.5 и 7 на фиг.1);

tгС1 - время движения шара с горизонтальным направлением оси вращения в начале спиральной части индуктора (выше фокальной плоскости);

tгС2 - то же, ниже фокальной плоскости;

tв - время движения шара с направлением оси вращения, повернутым на 90° (фиг.5, средняя часть гиперболоидной поверхности, опоясывающая фокальное сечение).

Условие симметричности

tв=tгП+tгС1+tгС2

На переходных по направлению осей вращения участках движения шаров по траектории «а» - «б» (фиг.2) и аналогичном на i-м витке ниже фокальной плоскости по возвратной траектории происходят прогревы, нивелирующие стыки между парными, взаимно перпендикулярными серповидными прогревами во время движения с горизонтальным направлением оси вращения и повернутым на 90° (показано на фиг.6).

На фиг.7 показано полукольцевое сечение направляющего профиля более рациональное относительно магнитоэлектрического КПД без устройства сложных (фасонных) магнитопроводов, но менее технологичное в части практического изготовления.

Выбор варианта - в зависимости от размеров шаров и электрических режимов нагрева.

Установка работает следующим образом.

1. Исходное статическое состояние (см. фиг.1):

расходный бункер 1 опорожнен, подбункерный питатель 3 выключен, индуктирующий провод 5 обесточен.

2. Последовательность запуска установки в работу:

включением механизма 2 порожний бункер устанавливается в положение, обеспечивающее необходимые угол α наклона и длину подающего желоба 4 для придания нужной начальной скорости движения шаров на входе в прямолинейный участок 6 направляющего профиля индуктора;

загрузка расходного бункера 1 шарами;

нажатием кнопки «пуск» включается индуктирующий провод 5, следом срабатывает подбункерный питатель дискретного действия 3, после чего шары по задающему желобу 4 скатываются с интервалами между ними в направляющий профиль 6, 7 индуктора;

далее симметрично нагретые ТВЧ в спиральной части индуктора шары до заданной температуры и глубины прогрева сбрасываются из прямого участка 8 направляющего профиля в закалочное устройство с охлаждающей средой.

Техническим результатом заявляемой совокупности существенных признаков является исключение проскальзывания и верчения шаров при скатывании по спиральному направляющему профилю индуктора, что предопределяет повышение точности расчетно-теоретических обоснований геометрических и магнитоэлектрических параметров спирального индуктора, благодаря чему сократятся издержки на опытно-конструкторские, экспериментальные и пусконаладочные работы при осуществлении изобретения.

Установка непрерывного действия для симметричного индукционного нагрева изделий шарообразной формы, содержащая расходный бункер, снабженный механизмом перемещения его в горизонтальной и вертикальной плоскостях, подбункерный питатель дискретного действия, подающий желоб от питателя к индуктору, снабженный шарнирными и телескопическим сочленениями, индуктирующий провод, навитый вокруг направляющего профиля, изогнутого в пространственную спираль с вертикальной осью симметрии, отличающаяся тем, что индуктирующий провод навит вокруг направляющего профиля, выполненного с кольцевым или полукольцевым сечением, изогнутого в фасонную спираль, имеющую переменную кривизну витков и вписанную в поверхность однополостного гиперболоида или сходную с ней поверхность второго порядка.



 

Похожие патенты:

Изобретение относится к области индукционного нагрева. .

Изобретение относится к технологии термообработки деталей, а именно к поверхностной закалке электрической индукцией, и используется преимущественно при изготовлении износостойких элементов фрикционного гасителя колебаний (ФГК) тележек грузовых вагонов.

Изобретение относится к области электротехники, в частности к устройству для наплавки и закалки деталей, которые требуют упрочнения. .

Изобретение относится к индукционному нагреву металлических изделий, например труб, и может быть использовано для местного нагрева трубопроводов при сварке и изолировании стыков труб.

Изобретение относится к области электротехники и машиностроения и может быть использовано на предприятиях, использующих индукционные нагревательные устройства небольшой мощности, подключаемые к сети переменного тока напряжением 220/380 В и частотой 50 Гц для нагрева объектов до температуры 600°С и выше.

Изобретение относится к области термической обработки изделий с применением индукционного нагрева, в частности шаров (мелющие тела, шарики подшипников качения и клапанов в гидравлических системах, в том числе высокоизносостойкие шарики в клапанах глубинных насосов и др.).

Изобретение относится к устройствам для индукционного нагрева и может быть использовано в любой отрасли промышленности при термической обработке деталей сложной формы и при испытаниях на прочность и долговечность.

Изобретение относится к области индукционного нагрева тонких плоских изделий в электромагнитном поле, в частности нагрева кромок тонких слябов с толщиной 20-50 мм и полос подката.

Изобретение относится к области индукционного нагрева, в частности к устройствам для индукционного нагрева кромок плоских изделий в поперечном магнитном поле. .

Изобретение относится к устройствам для индукционного нагрева и может быть использовано в промышленности при термической обработке вращающихся деталей, в том числе и переменной толщины, в частности железнодорожных и зубчатых колес, дисков и рабочих колес турбомашин и при испытаниях на прочность и долговечность.
Изобретение относится к области металлургии и литейному производству. .

Изобретение относится к оборудованию для термической обработки изделий шарообразной формы, в частности в массовых производствах мелющих тел, шариков подшипников качения и клапанов в гидравлических системах, в том числе высокоизносостойких шариков в обратных клапанах глубинных насосов для нефтедобычи и др.

Изобретение относится к области термической обработки изделий с применением индукционного нагрева, в частности шаров (мелющие тела, шарики подшипников качения и клапанов в гидравлических системах, в том числе высокоизносостойкие шарики в клапанах глубинных насосов и др.).
Изобретение относится к области машиностроения, а именно к мелющим телам для шаровых мельниц, используемых для размола руд, угля, клинкера и других материалов в металлургической, цементной, угольной отраслях промышленности, а также при производстве огнеупоров и строительных материалов.

Изобретение относится к термической обработке в металлургическом производстве и касается устройств для закалки металлических шаров с прокатного нагрева. .

Изобретение относится к металлургии, в частности к термической обработке мелющих шаров при их производстве. .

Изобретение относится к термообработке изделий и может быть использовано для закалки металлических шаров. .

Изобретение относится к термической обработке в области черной металлургии и может быть использовано для термообработки изделий. .
Изобретение относится к термической обработке в области черной металлургии и может быть использовано для термообработки изделий. .

Изобретение относится к области термообработки и может быть использовано на заводах машиностроительной отрасли промышленности для производства напольных шаров прокаткой и ковкой.

Изобретение относится к области термической обработки изделий и предназначено для использования в черной металлургии и машиностроении, преимущественно при производстве мелющих шаров
Наверх