Способ термической обработки деталей типа дисков газотурбинных двигателей из жаропрочных, порошковых никелевых сплавов

Изобретение относится к области металлургии, в частности к способам термической обработки заготовок типа дисков газотурбинных двигателей из жаропрочных, порошковых никелевых сплавов. Заявлен способ термической обработки деталей типа дисков газотурбинных двигателей из жаропрочных, порошковых никелевых сплавов. Способ включает нагрев до температуры закалки и старение. Охлаждение с температуры закалки проводят в соляной ванне с температурой на 350-500°С ниже температуры полного растворения γ'-фазы в течение 8-16 часов. Технический результат - повышение жаропрочности, сокращение длительности термической обработки. Повышается производительность процесса при низком уровне остаточных напряжений. 1 табл.

 

Известен способ термической обработки порошковых жаропрочных никелевых сплавов, включающий нагрев до температуры на 30-50°С выше температуры полного растворения γ'-фазы, выдержку и охлаждение вместе с печью, последующий нагрев до температуры на 20-40°С ниже температуры полного растворения γ'-фазы, выдержку при этой температуре и охлаждение со скоростью 200-300°С в минуту и старение (авторское свидетельство СССР №928722, B22F 3/24, C22F 1/10, 1980 г.) - прототип.

Недостатком этого способа термической обработки являются высокие остаточные напряжения термического происхождения, возникающие в результате закалки с высокой скоростью охлаждения и высокая трудоемкость процесса (его длительность).

Известен способ термической обработки высоколегированных жаропрочных никелевых сплавов, включающий нагрев на температуру закалки, выдержку, ступенчатое охлаждение со скоростью 530-650°С в минуту до температуры на 100-140°С ниже температуры полного растворения γ'-фазы, выдержку до полного выравнивания температур по сечению, затем охлаждение со скоростью 30-60°С в минуту до температуры на 250-350°С ниже температуры полного растворения γ'-фазы, далее на воздухе и старение (авторское свидетельство СССР №1508598, C22F 1/10, 1987 г.) - прототип.

При пониженном уровне остаточных напряжений этот способ термической обработки обеспечивает недостаточно высокие значения жаропрочности и низкую производительность процесса, т.е. его большую длительность.

Техническая задача данного изобретения заключается в получении повышенных значений жаропрочности, значительном сокращении длительности термических операций (закалки и старения), т.е. повышении производительности процесса при низком уровне остаточных напряжений.

Поставленная цель достигается при термической обработке, включающей нагрев на температуру закалки и старение. При этом охлаждение с температуры закалки проводят переносом в соляную ванну с температурой на 350-500°С ниже температуры полного растворения γ'-фазы, а старение проводят непосредственно в этой же ванне в течение 8-16 часов.

Охлаждение с температуры закалки и старение при температуре горячей среды менее чем на 350°С ниже температуры полного растворения γ'-фазы приводят к меньшей дисперсности частиц упрочняющей γ'-фазы и способствуют уменьшению длительной прочности при температуре испытания 650°С. Использование температуры горячей среды и, таким образом, старения более, чем на 500°С ниже температуры полного растворения γ'-фазы, значительно понижая диффузионную подвижность атомов, делает невозможным прохождение процессов старения и тем самым уменьшает жаропрочность.

Старение в течение 8-16 часов при заявленных температурах создает оптимальное с точки зрения повышенной жаропрочности при 650°С распределение по размерам частиц γ'-фазы.

Совмещение охлаждения с температуры закалки и старение в одной технологической операции в 2 раза повышает производительность термической обработки.

Пример

Проводили термическую обработку дисков из порошковых жаропрочных сплавов на никелевой основе ЭП741НП и ЭП962П. Температура полного растворения γ'-фазы сплава ЭП741НП - 1180°С, сплава ЭП962П - 1170°С.

Диски из сплава ЭП741НП термически обрабатывали по режимам:

- нагрев на температуру закалки 1190°С, выдержка 4 часа, перенос в соляную ванну, нагретую до 680°С, выдержка 16 часов, охлаждение на воздухе (режим 1), что на 500°С ниже температуры полного растворения γ'-фазы.

- нагрев на температуру закалки 1190°С, выдержка 4 часа, перенос в соляную ванну, нагретую до 830°С, что на 350°С ниже температуры полного растворения γ'-фазы, выдержка в ванне при этой температуре в течение 8 часов, охлаждение на воздухе (режим 2).

Диски из сплава ЭП962П термически обрабатывали по режиму:

- нагрев на температуру закалки 1180°С, выдержка 4 часа, перенос в соляную ванну, нагретую до 770°С, что на 400°С ниже температуры полного растворения γ'-фазы (режим 3).

Термическую обработку по способу-прототипу проводили по режимам:

- нагрев на температуру закалки 1180°С (для дисков из сплава ЭП962П) и 1190°С (для дисков из сплава ЭП741НП), выдержка 4 часа, перенос в соляную ванну с холодным маслом, а после достижения на дисках температуры 1030-1070°С, что на 100-140°С ниже температуры полного растворения γ'-фазы (для обоих сплавов), перенос в ванну с солью, нагретую на 850°С (на 320°С ниже температуры полного растворения γ'-фазы для сплава ЭП962П и на 330°С ниже той же температуры для сплава ЭП741НП), что обеспечивает скорость охлаждения 30-60°С в минуту; далее охлаждали на воздухе. Старение - при 730°С в течение 16 часов для первого сплава и при 850°С в течение 6 часов для второго (режимы 4 и 5).

Таблица
Средние значения механических свойств при 20°С и длительности процесса при термической обработке по предлагаемому способу и способу-прототипу.
Марка термообрабатываемого сплава Режим термической обработки Длительная прочность Длительность термической обработки, час Величины остаточных напряжений, МПа
режим 1 200 260 32 600
Сплав ЭП741НП режим 2 240 310 24 580
режим 4 (способ-прототип) 128 80 52 620
режим 3 860 - 24 560
Сплав ЭП962П режим 5 (способ-прототип) 410 - 50 580

Как видно из таблицы, предлагаемый способ термической обработки обеспечивает повышение длительной прочности при низком уровне остаточных напряжений и в 2 раза повышает производительность процесса по сравнению с термической обработкой по способу-прототипу.

Применение предлагаемого способа для термической обработки деталей типа дисков и валов газотурбинных двигателей позволяет в 1,5 раза повысить ресурс их работы.

Способ термической обработки деталей типа дисков газотурбинных двигателей из жаропрочных, порошковых никелевых сплавов, нагрев до температуры закалки и старение, отличающийся тем, что охлаждение с температуры закалки проводят в соляной ванне с температурой на 350-500°С ниже температуры полного растворения γ'-фазы в течение 8-16 ч.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к способам термической обработки жаропрочных сплавов на никелевой основе, в том числе изготовленных из гранул.

Изобретение относится к области металлургии, в частности к термической обработке сплавов на никелевой основе, и может быть использовано в авиадвигателестроении, машиностроении и других областях техники.
Изобретение относится к области металлургии и может быть использовано при изготовлении заготовок дисков для газотурбинных двигателей из гранулированных высоколегированных никелевых сплавов с исходной микрокристаллической структурой микродуплекс.

Изобретение относится к металлургии, а именно к получению изделий из высокожаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, преимущественно для раскатных дисков газотурбинных двигателей ГТД и газотурбинных установок ГТУ.

Изобретение относится к металлургии, а именно к получению сложноконтурных дисков из жаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД.
Изобретение относится к области машиностроения, в частности к авиационному двигателестроению, где используется вакуумная термообработка дисперсионно-твердеющих сплавов.

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, полученных методом высокоградиентной кристаллизации, работающих при температурах выше 600°С, в частности дисков ГТД.
Изобретение относится к области металлургии и может быть использовано при изготовлении заготовок дисков для газотурбинных двигателей из гранул высоколегированных жаропрочных сплавов на никелевой основе.

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД.

Изобретение относится к обработке материалов с эффектом памяти формы и может быть использовано для увеличения эффекта памяти формы (ЭПФ). .

Изобретение относится к области металлургии, в частности к способам термической обработки тяжелонагруженных деталей газовых турбин из порошковых сплавов на основе никеля

Изобретение относится к области металлургии, в частности к способам изготовления изделий типа дисков и валов газотурбинных двигателей из порошковых жаропрочных никелевых сплавов

Изобретение относится к области металлургии, в частности к способам получения изделий типа газотурбинных дисков из жаропрочных порошковых никелевых сплавов

Изобретение относится к области металлургии и термической обработки сплавов и может быть использовано в точном приборостроении и машиностроении

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, подходящим для литья конструктивных элементов газовой турбины
Изобретение относится к области металлургии, а именно к способам горячего изостатического прессования (ГИП) деталей, выполненных из интерметаллидного сплава на основе никеля для изготовления деталей горячего тракта ГТД

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных сплавов на основе никеля, предназначенных для тяжелонагруженных деталей, работающих при повышенных температурах в газотурбинных двигателях
Изобретение относится к области металлургии, в частности к термообработке жаропрочных никелевых сплавов, и может быть использовано в производстве деталей газотурбинных двигателей (дисков, валов и др.), работающих в условиях жесткого циклического нагружения
Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в газотурбинных двигателях для изготовления тяжелонагруженных деталей, работающих при повышенных температурах
Наверх