Устройство для измерения массового расхода вещества



Устройство для измерения массового расхода вещества

 


Владельцы патента RU 2433376:

Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU)

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Устройство для измерения массового расхода вещества, протекающего по трубопроводу, содержит первый и второй генераторы электромагнитных колебаний, первый и второй чувствительные элементы, коррелятор, соединенный с первым входом умножителя. Дополнительно в устройство для измерения массового расхода вещества введены тройник, первый и второй детекторы, первый и второй измерители амплитудно-частотных характеристик, элемент ввода в трубопровод электромагнитных колебаний, элемент вывода из трубопровода электромагнитных колебаний и измеритель поворота плоскости поляризации и выполнены в виде тороидальных резонаторов и сочленены с трубопроводом в разных его сечениях. Причем выход первого генератора электромагнитных колебаний соединен с первым плечом тройника, второе плечо которого подключено к входу первого тороидального резонатора, а третье плечо тройника подключено к входу второго тороидального резонатора. Технический результат - повышение точности измерения массового расхода вещества. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство, реализуемое доплеровским микроволновым измерителем массового расхода криогенных жидких сред, протекающих по диэлектрическому трубопроводу (см. В.А. Викторов и др. «Радиоволновые измерения параметров технологических процессов». М.: Энергоатомиздат, 1989, стр.141-142), в котором по преобразованию амплитуды рассеянного неоднородностями в потоке сигнала, зависящего от плотности материала, и частоты доплеровского сигнала, связанного со средней скоростью твердых включений (шуги) в потоке, определяют массовый расход контролируемого вещества.

Недостатком этого известного устройства является ненадежность, связанная с нестабильностью амплитуды рассеянного сигнала.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для определения массового расхода вещества, протекающего по трубопроводу (см. авторское свидетельство №1753281, бюл. №29, 1992 г.). Это устройство содержит две пары антенн, расположенных в разных сечениях вдоль измерительного участка трубопровода диаметрально противоположно в каждой паре. Данные конструкции антенн образуют два кольцевых резонатора, которые включены в частозадающие цепи автогенераторов. Их выходные сигналы в виде частот, зависящих от собственных частот электромагнитных колебаний соответствующих кольцевых резонаторов, поступают на вычислитель скорости потока вещества. Одновременно выходной сигнал одного из автогенераторов поступает на вычислитель плотности. В вычислителе скорости потока по временному положению максимума взаимокорреляционной функции частот автогенераторов получают информацию о скорости потока вещества. Выходной сигнал вычислителя плотности в виде частоты одного из автогенераторов служит для определения плотности вещества. В результате по умножению выходных сигналов вычислителей скорости потока и плотности вещества определяют массовый расход контролируемой среды в трубопроводе.

Недостатком этого устройства следует считать низкую точность из-за изменения высоты слоя вещества в трубопроводе.

Задачей заявляемого технического решения является повышение точности измерения.

Поставленная задача достигается тем, что в устройство для измерения массового расхода вещества, протекающего по трубопроводу, содержащее первый и второй генераторы электромагнитных колебаний, первый и второй чувствительные элементы, коррелятор, соединенный выходом с первым входом умножителя, введены тройник, первый и второй детекторы, первый и второй измерители амплитудно-частотных характеристик, элемент ввода в трубопровод электромагнитных колебаний, элемент вывода из трубопровода электромагнитных колебаний и измеритель поворота плоскости поляризации, первый и второй чувствительные элементы выполнены в виде тороидальных резонаторов и сочленены с трубопроводом в разных его сечениях, элементы ввода в трубопровод и вывода из трубопровода электромагнитных колебаний расположены диаметрально на наружной поверхности трубопровода, при этом выход первого генератор электромагнитных колебаний соединен с первым плечом тройника, второе плечо которого подключено к входу первого тороидального резонатора, выход которого через первый детектор соединен со входом первого измерителя амплитудно-частотных характеристик, выход которого подключен к первому входу коррелятора и второму входу умножителя, второй вход коррелятора подключен к выходу второго измерителя амплитудно-частотных характеристик, вход которого через второй детектор соединен с выходом второго тороидального резонатора, вход второго тороидального резонатора подключен к третьему плечу тройника, третий вход умножителя соединен с выходом измерителя поворота плоскости поляризации, выход которого соединен с элементом вывода из трубопровода электромагнитных колебаний, элемент ввода в трубопровод электромагнитных колебаний соединен с выходом второго генератора электромагнитных колебаний.

Существенными отличительными признаками указанной выше совокупности является наличие тройника, измерителя поворота плоскости поляризации и элементов ввода в трубопровод и вывода из трубопровода электромагнитных колебаний.

В заявляемом техническом решении благодаря свойствам перечисленных признаков определение максимума взаимокорреляционной функции резонансных частот двух тороидальных резонаторов, резонансной частоты одного из них и угла поворота плоскости поляризации, прошедшей через контролируемое вещество волны, дает возможность решить поставленную задачу: обеспечить высокую точность измерения массового расхода вещества, протекающего по трубопроводу.

Устройство содержит (см. чертеж) первый генератор электромагнитных колебаний 1, второй генератор электромагнитных колебаний 2, тройник 3, первый тороидальный резонатор 4, второй тороидальный резонатор 5, первый детектор 6, второй детектор 7, первый измеритель амплитудно-частотных характеристик 8, второй измеритель амплитудно-частотных характеристик 9, элемент ввода в трубопровод электромагнитных колебаний 10, элемент вывода из трубопровода электромагнитных колебаний 11, соединенный со входом измерителя поворота плоскости поляризации 12, коррелятор 13, подключенный выходом к первому входу умножителя 14. На чертеже цифрой 15 обозначен трубопровод.

Устройство работает следующим образом. С выходом первого генератора электромагнитных колебаний 1 сигнал поступает на первое плечо тройника 3. Здесь по принципу действия тройника (волноводный) сигнал делится поровну между вторым и третьим плечами. После этого сигналы, снимаемые со второго и третьего плеч тройника, вводят соответственно в резонансные полости первого 4 и второго 5 тороидальных резонаторов. В рассматриваемом случае первый и второй тороидальные резонаторы сочленены с трубопроводом 15 резонансными полостями в разных его сечениях. При этом в местах сочленения сечение трубопровода должно соответствовать сечениям резонансных полостей первого и второго тороидальных резонаторов, т.е. контролируемое вещество должно перемещаться по трубопроводу и резонансным полостям беспрепятственно и с одной и той же скоростью.

При отсутствии вещества в трубопроводе (резонансных полостях) возбуждают электромагнитные колебания в первом и втором резонаторах (при возбуждении колебаний в резонаторах первый генератор должен иметь возможность перестроить свою частоту). В данном случае наличие резонанса контролируется сигналами, выведенными из резонансных полостей первого и второго резонаторов с помощью первого 6 и второго 7 детекторов. Эти сигналы далее передаются на соответствующие входы первого 8 и второго 9 измерителей амплитудно-частотных характеристик. В этих измерителях определяют собственные резонансные частоты тороидальных резонаторов и отслеживают их изменение.

Наличие вещества в трубопроводе и резонансных полостях приводит к тому, что резонансные частоты тороидальных резонаторов меняются и они могут быть определены как (см. И.В. Лебедев. Техника и приборы СВЧ. М.: Высшая школа, 1970, стр.349-350):

где ω10 и ω20 - резонансные частоты первого и второго тороидальных резонаторов соответственно; r10 и r20 - радиусы резонансных полостей первого и второго тороидальных резонаторов соответственно; R1 и R2 - соответственно наружные радиусы первого и второго тороидальных резонаторов; d1 и d2 - высоты резонансных полостей первого и второго тороидальных резонаторов соответственно; ε и µ - диэлектрическая и магнитная проницаемости вещества соответственно; ε0 и µ0 - диэлектрические и магнитные проницаемости вакуума соответственно.

Пусть рассматриваемые тороидальные резонаторы идентичны по конструкции, т.е. r10=r20=r0; R1=R2=R0; d1=d2=d. Тогда при µ≈1 для одного из тороидальных резонаторов можно принимать, что

где ω0 - резонансная частота одного из тороидальных резонаторов.

Из формулы (1) видно, что при постоянных значениях r0, R, d, µ0 и ε0 по резонансной частоте ω0 можно судить о диэлектрической проницаемости вещества в трубопроводе.

Известно, что для измерения массового расхода вещества в трубопроводе необходимо определить скорость потока вещества и его плотность при известном сечении трубопровода.

Согласно предлагаемому техническому решению определение плотности вещества основывается на ее зависимости от диэлектрической проницаемости вещества. Эту зависимость, например, для слабополярных диэлектрических веществ можно выразить формулой Клаузиуса-Моссоти

где N - число Авогадро; α - поляризуемость молекул вещества; ρ - плотность вещества; М - молекулярный вес вещества. Отсюда следует, что если подставить значение ε из уравнения (2) в уравнение (1), то по частоте ω0 при известных значениях М, α и N можно определить плотность вещества. В данном устройстве определение частоты ω0 можно произвести с помощью первого измерителя амплитудно-частотных характеристик.

Ввиду того, что тороидальные резонаторы сочленены с трубопроводом в разных его сечениях, их амплитудно-частотные характеристики (АЧХ), наблюдаемые на экранах соответственно первого и второго измерителей амплитудно-частотных характеристик, при перемещении вещества по трубопроводу, должны быть смещены во времени. Если принимать, что поток вещества сначала проходит резонансную полость первого резонатора, а затем - второго, то АЧХ первого резонатора должна опережать во времени АЧХ второго резонатора, и наоборот. При этом запаздывание по времени τ3 АЧХ второго резонатора относительно АЧХ первого резонатора может быть определено отношением расстояния l между центрами тороидальных резонаторов к скорости потока вещества в трубопроводе. Таким образом, в рассматриваемом случае определение скорости потока вещества υn предусматривает (при постоянном расстоянии l) оценку времени задержки τ3 АЧХ второго резонатора от АЧХ первого. Для этого выходные сигналы первого и второго измерителей амплитудно-частотных характеристик, соответствующие АЧХ первого и второго тороидальных резонаторов, поступают на соответствующие входы коррелятора 13. Здесь для оценки τ3 используется максимум взаимокорреляционной функции двух входных сигналов коррелятора (частотные сигналы двух тороидальных резонаторов). Согласно теории взаимокорреляционной функции задержкой опережающего сигнала (АЧХ первого резонатора) на время τ и равенством τ=τ3 можно добиться максимума корреляционно обрабатываемых сигналов. Следовательно, измеряя время, при котором достигается максимум взаимокорреляционной функции частотных сигналов тороидальных резонаторов, можно определить скорость потока вещества в трубопроводе.

Итак, при известном сечении трубопровода информацию о скорости потока вещества в виде максимума взаимокорреляционной функции частотных сигналов двух тороидальных резонаторов и плотности вещества в виде резонансной частоты одного из тороидальных резонаторов можно использовать для измерения массового расхода вещества, протекающего по трубопроводу.

Как показывает практика, этот подход эффективно работает при полном потоке вещества в трубопроводе, т.е. когда сечение потока соответствует сечению трубопровода.

Изменение сечения потока вещества (высоты слоя материала) в трубопроводе может привести к погрешности.

В данном устройстве для исключения такого рода погрешности предлагается отслеживать (оценить) изменение высоты слоя материала в трубопроводе. Для этого выходной сигнал второго генератора электромагнитных колебаний 2 с помощью элемента ввода в трубопровод электромагнитных колебаний 10 направляется в поток вещества. Далее прошедший через поток сигнал улавливается элементом вывода из трубопровода электромагнитных колебаний 11 и переносится на вход измерителя поворота плоскости поляризации 12.

Если по трубопроводу протекает вещество, обладающее способностью поворачивать направление поляризации проходящей через вещество волны, то эта волна окажется повернутой этим веществом на некоторый угол. На практике существуют оптически активные вещества, обладающие этой способностью, и оптически неактивные вещества, не обладающие этой способностью.

Допустим, по трубопроводу протекает оптически активное вещество, тогда для угла поворота плоскости поляризации прошедшей через это вещество волны φ можно записать

где l - длина волны в веществе, αоп - постоянная вращения, зависящая от природы вещества и длины волны.

В рассматриваемом случае можно принимать, что длина пути волны l соответствует высоте слоя материла (вещества) h, например, в горизонтальном трубопроводе.

В соответствии с этим решение уравнения (3) по l(h) позволяет записать

.

Из этой формулы видно, что если известен параметр αоп, измерением угла поворота плоскости поляризации прошедшей через слой вещества волны можно вычислить высоту слоя материала. Следовательно, выходным сигналом измерителя поворота плоскости поляризации можно оценить параметр h.

Принимая во внимание, что высота слоя вещества в трубопроводе может изменяться от нуля до величины, равной внутреннему диаметру трубопровода, для определения сечения потока вещества в трубопроводе может быть использовано соотношение

,

где Д - внутренний диаметр трубопровода.

В предлагаемом устройстве для измерения массового расхода контролируемой среды с учетом изменения сечения потока вещества выходные сигналы измерителя поворота плоскости поляризации, первого измерителя амплитудно-частотных характеристик и коррелятора поступают на соответствующие входы умножителя 14. Здесь по умножению указанных информативных сигналов получают результат о массовом расходе вещества, протекающего по трубопроводу.

Таким образом, на основе проведения одновременно определения скорости потока вещества, плотности вещества и сечения потока вещества можно обеспечить высокую точность измерения массового расхода.

Устройство для измерения массового расхода вещества, протекающего по трубопроводу, содержащее первый и второй генераторы электромагнитных колебаний, первый и второй чувствительные элементы, коррелятор, соединенный выходом с первым входом умножителя, отличающееся тем, что в него введены тройник, первый и второй детекторы, первый и второй измерители амплитудно-частотных характеристик, элемент ввода в трубопровод электромагнитных колебаний, элемент вывода из трубопровода электромагнитных колебаний и измеритель поворота плоскости поляризации, первый и второй чувствительные элементы выполнены в виде тороидальных резонаторов и сочленены с трубопроводом в разных его сечениях, элементы ввода в трубопровод и вывода из трубопровода электромагнитных колебаний расположены диаметрально на наружной поверхности трубопровода, причем выход первого генератора электромагнитных колебаний соединен с первым плечом тройника, второе плечо которого подключено ко входу первого тороидального резонатора, выход которого через первый детектор соединен со входом первого измерителя амплитудно-частотных характеристик, выход которого подключен к первому входу коррелятора и второму входу умножителя, второй вход коррелятора подключен к выходу второго измерителя амплитудно-частотных характеристик, вход которого через второй детектор соединен с выходом второго тороидального резонатора, вход второго тороидального резонатора подключен к третьему плечу тройника, третий вход умножителя соединен с выходом измерителя поворота плоскости поляризации, выход которого соединен с элементом вывода из трубопровода электромагнитных колебаний, элемент ввода электромагнитных колебаний в трубопровод соединен с выходом второго генератора электромагнитных колебаний.



 

Похожие патенты:

Изобретение относится к области высокоточных методов измерения расхода прокачиваемых через трубопроводы жидкостей или газов. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов многофазного потока, например для измерения дебита нефтяных скважин.

Изобретение относится к измерительной технике, в частности к ультразвуковым способам измерения расхода жидких и/или газообразных сред и устройствам для его осуществления.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к измерительной технике по ультразвуковым (у.з.) расходомерам, а именно к способам и устройствам измерения расхода объема и массы жидких и газовых сред в напорных трубопроводах круглого сечения.

Изобретение относится к созданию ячейки для измерения потока и кожуха для полностью электронного водомерного устройства. .

Изобретение относится к медицинской технике, а именно к ультразвуковым датчикам потока, используемым в хирургических системах

Изобретение относится к области измерительной техники, а именно к измерению расхода газа, в том числе природного и попутного нефтяного, добываемых на газоконденсатных и нефтяных месторождениях

Изобретение относится к измерительной технике, в частности к ультразвуковым способам измерения расхода жидких и газообразных сред, и может быть использовано, например, в нефтяной и газовой промышленности

Изобретение относится к ультразвуковым расходомерам

Изобретение относится к измерительным приборам, конкретнее к расходомерам

Изобретение относится к измерительной технике и может быть использовано для измерения расхода жидких и газообразных сред и, в частности, для измерения расхода природного газа

Изобретение относится к измерительной системе для определения и/или контроля расхода измеряемой среды через измерительную трубу, содержащей, по меньшей мере, один ультразвуковой преобразователь и, по меньшей мере, один блок регулирования/оценки, который с помощью измерительных сигналов или измеренных данных, выведенных из измерительных сигналов, определяет объемный и/или массовый поток протекающей в измерительной трубе измеряемой среды, причем ультразвуковой преобразователь содержит, по меньшей мере, один электромеханический преобразовательный элемент, передающий и/или принимающий ультразвуковые сигналы, а также, по меньшей мере, один связующий слой в зоне между электромеханическим преобразовательным элементом и измеряемой средой, направляющий ультразвуковые сигналы

Изобретение относится к области измерения объема или массы жидкостей или газов путем пропускания их через измерительные устройства непрерывным потоком и измерением частоты фазового сдвига, времени распространения электромагнитных или других волн и может найти применение для измерения расхода жидкости или газа в напорных трубопроводах
Наверх