Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя амплитудно-частотных характеристик 4, и индикатор 5. При этом чувствительный элемент выполнен в виде круглого волноводного резонатора с сосной цилиндрической металлической перегородкой на каждом конце и один из концов волновода дополнительно закрыт диэлектрической пластиной. Изобретение обеспечивает повышение точности измерения и исключение чувствительности к налипанию. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Известен механический влагомер для постоянного контроля за влажностью почвы горшочных, балконных или садовых растений (см. Mechanischer Feuchtigkeitsmesser fur Bodenfeuchtingkeitsuberwachung von Pflanzen: Заявка 102004002272 Германия, МПК7 G01N 19/10. Florasus AG, Wein Reinhold. №102004002272; Заявл. 16.01.2004; опубл. 11.08.2005).

В этом влагомере по показаниям шкального индикатора, стрелка которого отклоняется в зависимости от растяжения и сжатия элемента, изготовленного из материала, чувствительного к влажности почвы, определяют контролируемый параметр.

Недостатком этого известного устройства является контактность чувствительного элемента с контролируемой средой.

Наиболее близким технических решением к предлагаемому является принятый автором за прототип электронный датчик для измерения влажности почвы (см. Elektronischer sensor fur Wandlung der Erdfenchtigkeit in eine elektrische Grosse: Заявка 102004002271 Германия, МПК7 G01N 27/22, G01N 33/24. Florasus AG, Wein Reinhold. №102004002271.2; Заявл. 16.01.2004; опубл. 11.08.2005).

Принцип действия этого датчика, предназначенного для измерения влажности почвы горшочных или балконных растений, базируется на конденсаторе, диэлектрик которого имеет диэлектрическую проницаемость, зависящую от влажности почвы. Недостатком этого устройства следует считать низкую точность из-за температурных влияний на диэлектрическую проницаемость диэлектрика конденсатора и чувствительность к налипанию.

Задачей заявляемого технического решения является повышение точности измерения и исключение чувствительности к налипанию.

Поставленная задача достигается тем, что в устройство для измерения влажности почвы, содержащее генератор сигналов, чувствительный элемент и индикатор, введены детектор и измеритель амплитудно-частотных характеристик сигналов, чувствительный элемент выполнен в виде круглого волноводного резонатора с соосной цилиндрической металлической перегородкой на каждом конце и один из концов волновода дополнительно закрыт диэлектрической пластиной, при этом выход генератора сигналов соединен со входом волноводного резонатора, выход которого через детектор подключен ко входу измерителя амплитудно-частотных характеристик, выход измерителя амплитудно-частотных характеристик соединен с индикатором.

Существенными отличительными признаками указанной выше совокупности является выполнение чувствительного элемента в виде круглого волноводного резонатора с соосной цилиндрической металлической перегородкой на каждом конце, наличие детектора и измерителя амплитудно-частотных характеристик сигналов.

В заявляемом техническом решении благодаря свойствам перечисленных признаков, определение резонансной частоты волноводного круглого резонатора с соосной цилиндрической металлической перегородкой на каждом конце дает возможность решить поставленную задачу: обеспечить высокую точность измерения влажности почвы и исключение чувствительности к налипанию.

На чертеже приведены функциональные схемы предлагаемого устройства.

Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, круглый волноводный резонатор 2, детектор 3, соединенный выходом со входом измерителя амплитудно-частотных характеристик 4, и индикатор 5.

Устройство работает следующим образом. Выходным сигналом генератора электромагнитных колебаний с перестраиваемой частотой 1 возбуждают электромагнитные колебания в круглом волноводном резонаторе 2, имеющем соосные цилиндрические металлические перегородки на каждом конце.

В общем виде для собственной резонансной частоты ω0 возбужденного электромагнитными колебаниями цилиндрического резонатора, заполненного какой-нибудь средой, можно записать

где а и l - внутренний радиус и длина резонатора соответственно; ε и µ - диэлектрическая и магнитная проницаемость среды соответственно. Числа m, n и p определяют соответственно вариацию поля по азимуту, радиусу и высоте резонатора. Через Amn обозначен корень бесселовой функции.

Согласно теории электромагнитного поля в цилиндрическом резонаторе могут существовать поперечно-электрические TEmnp (m=0, 1, 2…; n=1, 2, 3…; р=1, 2, 3…) и поперечно-магнитные TMmnp (m=0, 1, 2…; n=1, 2, 3…; р=0, 1, 2, …) колебания.

Выражение (1) с учетом того, что данный круглый волновод (цилиндрический резонатор) на концах имеет соосные цилиндрические перегородки, способствующие поддержанию в полости резонатора ТЕ011 колебания (m=0, n=1, р=1), можно переписать как

Из уравнения (2) следует, что при известных значениях µ, A01, а и l измерением частоты ω0 можно определить диэлектрическую проницаемость среды в круглом волноводном резонаторе. Кроме того, одним из важных достоинств конструкции предлагаемого чувствительно элемента (круглого волновода) является исключение его чувствительности к налипанию и другим загрязнениям на стенках волновода из-за того, что напряжение электрического поля в режиме ТЕ011 равно нулю на внутренней поверхности резонатора.

Пусть круглый волновод заполнен контролируемой почвой. Для этого один из концов волновода дополнительно необходимо закрыть диэлектрической пластинкой. При этом диэлектрическая проницаемость материала пластинки приблизительно должна равняться диэлектрической проницаемости воздуха. Это требуется для того, чтобы не нарушить существование режима ТЕ011 колебаний в полости резонатора.

Для установления зависимости ω0 от влажности почвы можно использовать известную зависимость диэлектрической проницаемости почвы от влагосодержания воды в ней (см. Радиолокационные методы исследования Земли. Под редакцией профессора Ю.А.Мельника. M.: Советское радио», 1980, стр.148)

где εвп - диэлектрическая проницаемость влажной почвы; ε0 - величина диэлектрической проницаемости, характеризующая состав почвы (ε0=2 для песчаных и ε0=4 для глинистых почв); К - коэффициент, зависящий от диапазона длин волн (К=0,55 для сантиметрового диапазона длин волн); mв=(Мв-Мс)/Mc - влажность почвы (Мв и Me - удельная масса влажной и сухой почв соответственно). Здесь следует отметить, что формула (3) достаточно точно может работать, если mв≤30…40%.

Из сопоставления формул (2) и (3) видно, что при известной почве и диапазоне длин электромагнитных волн, если подставить в формуле (2) вместо ε значение εвп, определяемое формулой (3), то измерением частоты ω0 можно вычислить влажность почвы mв.

Согласно предлагаемому технического решению для измерения резонансной частоты ω0, сигнал с выхода круглого волноводного резонатора через детектор 3 подают на вход измерителя амплитудно-частотных характеристик (АЧХ) 4. С помощью этого измерителя определяют резонансную частоту возбужденного электромагнитными колебаниями резонатора при отсутствии почвы в нем, что достигается путем перестройки частоты генератора электромагнитных колебаний. После этого при наличии влажной почвы в полости резонатора, изменением частоты генератора электромагнитных колебаний находят максимум (пик) амплитудной частотной характеристики выходного резонансного сигнала чувствительного элемента (резонатора), соответствующий частоте, связанной с влажностью почвы. Далее с выхода АЧХ сигнал поступает в индикатор 5, где отображается информация о влажности почвы в нужном виде, например, в процентах.

Таким образом, в заявляемом техническом решении показано, что на основе определения резонансной частоты круглого волноводного резонатора, имеющего на концах соосные цилиндрические металлические перегородки, можно обеспечить повышение точности измерения влажности почвы и исключение чувствительности к налипанию.

Устройство для измерения влажности почвы, содержащее генератор сигналов, чувствительный элемент и индикатор, отличающееся тем, что в него введены детектор и измеритель амплитудно-частотных характеристик сигналов, чувствительный элемент выполнен в виде круглого волноводного резонатора с соосной цилиндрической металлической перегородкой на каждом конце и один из концов волновода дополнительно закрыт диэлектрической пластиной, причем выход генератора сигналов соединен со входом волноводного резонатора, выход которого через детектор подключен ко входу измерителя амплитудно-частотных характеристик, выход измерителя амплитудно-частотных характеристик соединен со входом индикатора.



 

Похожие патенты:

Изобретение относится к измерительной технике и предназначено для контроля влажности воздуха и газов. .

Изобретение относится к измерительной технике, а именно к способам и устройствам для определения физических свойств веществ путем измерения электрической емкости, и может быть использовано для экспрессного определения теплофизических характеристик неметаллических материалов, например строительных.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.).

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, для регистрации и измерения содержания оксида углерода и других газов. .

Изобретение относится к электроизмерительной технике и может быть использовано для измерения влажности различных сыпучих материалов, в том числе зерна и почвы. .

Изобретение относится к области анализа различных материалов и может быть использовано в различных отраслях промышленности для определения влажности сыпучих материалов, например для контроля влажности торфа при его производстве.

Изобретение относится к измерительной технике и может быть использовано для измерения влажности различных материалов и почвы. .

Изобретение относится к контрольно-измерительной технике, а именно к устройствам для измерения влажности твердых, сыпучих и газообразных веществ, и может быть применено в строительной, горнодобывающей, деревообрабатывающей и пищевой отраслях промышленности.

Изобретение относится к измерительной технике, к технологии проведения испытаний и аттестации пробозаборных систем и может быть использовано для контроля подготовки потока на участке отбора жидкости из трубопровода.

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации при составлении земельного кадастра и т.п. .

Изобретение относится к области измерительной техники и может быть использовано для определения объемного содержания нефти (или нефтепродуктов) и воды в потоке водонефтяных эмульсий в трубопроводе, в диапазоне от 0 до 100% по каждой компоненте при любой степени минерализации воды, а также для индикации границ раздела газонефтеводяной смеси в резервуарах.

Изобретение относится к области измерительной техники и может быть использовано для определения объемной доли жидкости в потоке газожидкостной смеси (ГЖС) в рабочих условиях.

Изобретение относится к системе выявления и локализации воды в структуре сэндвич (1) для летательного аппарата, имеющей в своем составе средство для нагревания воды, присутствующей в промежуточном слое структуры сэндвич, и средство для создания по меньшей мере одного изображения поверхности структуры сэндвич, причем упомянутое изображение демонстрирует отличительные зоны упомянутой поверхности, соответствующие наличию воды в промежуточном слое, в которой средство для нагревания воды содержит устройство (2, 3, 6) для излучения внутри структуры сэндвич микроволн на частоте, по существу равной резонансной частоте молекул воды.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами, в частности для измерения размеров капель воды в сырой нефти.

Изобретение относится к области измерительной техники и может быть использовано на продуктивных газоконденсатных скважинах, на установках подготовки газа к транспорту, установках первичной переработки газа для определения расхода газа, расхода жидкости, доли воды и доли конденсата в жидкости без разделения продукта добычи на газообразную и жидкую фазы.

Изобретение относится к области электрических измерений неэлектрических величин и может быть использовано для контроля влажности материалов. .

Изобретение относится к технике измерения на СВЧ и позволяет повысить точность и диапазон измерения влагосодержания различных жидких сред, в частности нефтепродуктов.

Изобретение относится к исследованию и анализу материалов, а именно к способам определения влажности зерна зерновых сельскохозяйственных культур, в том числе подсолнечника, кукурузы и рапса
Наверх