Термостойкий полимерный нанокомпозит, обладающий яркой фотолюминесценцией

Изобретение относится к полимерным нанокомпозитам, преобразующим УФ-составляющую солнечного или другого источника света в излучение видимой части спектра, и касается термостойкого полимерного нанокомпозита, обладающего яркой фотолюминесценцией. Нанокомпозит включает в качестве полимера-матрицы термопластичный сополимер. На стадии синтеза, получения композиции или формования изделия в сополимер вносят в качестве светопреобразующего компонента наноразмерный кремний в количествах 0,001-1,5 мас.% с размером частиц 1-5 нм, содержащий в поверхностном слое ядра диоксид кремния. Изобретение позволяет создать нанокомпозит, обладающий яркой и устойчивой фотолюминесценцией в области от 750 до 500 нм, которая сохраняется при высоких, до 400°С, температурах. 2 ил.

 

Изобретение относится к полимерным нанокомпозитам, преобразующим УФ-составляющую солнечного или другого источника света в излучение видимой части спектра, и может быть использовано в различных областях, например, для производства пленок или стекол, используемых в парниковых хозяйствах, при создании различных декоративных элементов, в рекламе, для производства тонких полимерных пленок и волокон, использующихся для защиты от подделки различных документов и ценных бумаг многих других областей техники.

Известен способ получения световозвращающего материала, содержащего подложку с отражающей поверхностью, на которой посредством слоя связующего укреплены прозрачные микрошарики, а также флуоресцирующие цветонесущие частицы, с введенным в него защитным прозрачным слоем пленкообразователя, на тыльной поверхности которого расположены люминофорные частицы, по крайней мере, одного цвета люминесценции (патент 2166517, опубл. 20.03.1997, МПК G02B 5/128).

Недостатками данного способа является применение растворной технологии при введении флуоресцирующих и люминофорных частиц в пленкообразующую полимерную матрицу с использованием токсичных растворителей и использование люминофоров одного цвета.

Наиболее близким по совокупности существенных признаков к заявляемой термостойкой полимерной композиции, обладающей яркой фотолюминесценцией, является светопреобразующая полимерная композиция, содержащая термопластичный (со)полимер и активную добавку А, В, С, D, где А - органическая и/или неорганическая соль европия, В - одно или несколько соединений из класса β-дикетонов, С - соединение из класса азот и/или кислородсодержащих гетероциклов или из ряда оксидов органических аминов, фосфинов или сульфидов, D - соль щелочного, щелочноземельного металла и/или аммония и органической кислоты насыщенного ряда и/или алифатический амин, при следующем соотношении компонентов, мас.%: соединение А - 0,001-5; соединение В - 0,001-5; соединение С - 0,001-5; соединение D - 0,001-5; термопластичный полимер - остальное (патент 2166517, опубл. 10.05.2001, МПК С08К 3/10, С08К 5/098, С08К 5/07, 15, 17, 34, 732, 5313).

Недостатками данной полимерной композиции являются использование люминофорных частиц, которые испускают свет в узком спектральном диапазоне - преимущественно в красной области спектра (ок. 750 нм), высокая стоимость в случае солей европия, присутствие вредных для здоровья органических растворителей при синтезе люминофоров органического происхождения, а также ограниченная сфера использования данных светопреобразующих материалов из-за их низкой термостойкости. В такие материалы невозможно вводить органические люминофоры, если температура переработки полимера лежит выше 200°С.

Техническим результатом изобретения является способ получения термостойких (со)полимерных нанокомпозитов, обладающих яркой фотолюминесценцией в широком спектральном диапазоне - от 750 нм до 500 нм, при облучении УФ-излучением различной природы.

Указанный технический результат достигается за счет того, что в полимерный материал на стадии синтеза или переработки полимера в композицию или изделие вводится нанокристаллический кремний от 0,001 до 1.5 мас.% с размером частиц 1-5 нм, содержащий в поверхностном слое ядра диоксид кремния, с устойчивой яркой люминесценцией в области от 750 нм до 500 нм, сохраняющего люминесцентные свойства при высоких, до ~400°С, температурах в массовых количествах.

В качестве полимера-матрицы могут выступать термопластичные (со)полимеры, температура переработки которых не превышает 400°С.

Примеры реализации технического результата.

Пример 1

Готовим раствор полиметилметакрилата в этилацетате. Добавляем в полученный раствор 0,001 мас.% наноразмерного кремния со средним размером частиц 5 нм. Используя источник ультразвука, добиваемся декоагуляции наночастиц кремния в растворе. Отливаем на подложке тонкие пленки ПММА, содержащие частицы наноразмерного кремния. При воздействии УФ-облучения пленки полиметилметакрилата, модифицированные нанокристаллическим кремнием, испускают яркое свечение, имеющее максимум интенсивности в области 780 нм (красное свечение). На Фиг.1 представлены спектр фотолюминесценции нанокомпозита на основе полиметилметакрилата и нанокристаллического кремния, имеющего максимум фотолюминесценции в области 780 нм (а) и функция плотности вероятности распределения по размерам нанокристаллического кремния, полученная методом просвечивающей электронной микроскопии (б). Возбуждающая линия - 407 нм.

Пример 2

Готовим расплав сополимера этилена с винилацетатом (СЭВА) в обогреваемом смесителе открытого или закрытого типа, позволяющего развивать высокие напряжения сдвига. Вносим в массу расплава навеску частиц наноразмерного кремния со средним размером частиц 1 нм, соответствующую 0,1 мас.%. Гомогенизируем композицию продолжительное время. Полученную смесь подвергаем измельчению и экструдируем при температуре расплава для получения рукавной пленки методом раздува. Полученные пленки при облучении УФ дают яркое синее свечение, имеющее максимум интенсивности в области 500 нм.

Пример 3

На стадии полимеризации полифениленсульфида вносим 0,5 мас.% частиц наноразмерного кремния диаметром 1,5 нм. Тонкое диспергирование нанокремния осуществляем ультразвуковым устройством. Полученный нанокомпозит перерабатывается в изделие методом литья под давлением. В результате УФ-облучения полимерный материал испускает яркое зеленое свечение, имеющее максимум интенсивности в области 580 нм.

Пример 4

На стадии приготовления пресс-порошка на основе фенопласта, в смесительное оборудование дозируется 1,5 мас.% наноразмерного кремния с диаметром 4,5 нм. Полученный пресс-порошок может успешно перерабатываться методами прямого горячего прессования и литья под давлением. Отформованные изделия при облучении УФ испускают свет, имеющий максимум интенсивности в синей области спектра ок. 500 нм. На Фиг.2 представлены спектр фотолюминесценции нанокомпозита на основе фенопласта и нанокристаллического кремния, имеющего максимум фотолюминесценции в области 500 нм (а) и функция плотности вероятности распределения по размерам нанокристаллического кремния, полученная по данным рентгеновской дифракции (б). Возбуждающая линия - 407 нм.

Пример 5

Готовится прядильный раствор на основе полиамида. В готовый раствор вносят 1 мас.% нанокристаллического кремния с размером частиц 1,3 нм. С помощью ультразвуковой ванны добиваются полной деагломерации частиц и их идеального распределения в растворе. Из готового раствора полимерного нанокомпозита формуют ультратонкие волокна методом электроформования. Они преобразуют УФ-излучение в сине-зеленое свечение в области 580 нм.

Термостойкий полимерный нанокомпозит, обладающий фотолюминесценцией, включающий в качестве полимера-матрицы термопластичный (со)полимер, отличающийся тем, что на стадии синтеза, получения композиции или формования изделия в (со)полимер вносят в качестве светопреобразующего компонента наноразмерный кремний в количествах 0,001-1,5 мас.% с размером частиц 1-5 нм, содержащий в поверхностном слое ядра диоксид кремния, придающий композиту яркую и устойчивую фотолюминесценцию в области от 750 до 500 нм, которая сохраняется при высоких, до 400°С, температурах.



 

Похожие патенты:

Изобретение относится к неорганическим люминесцирующим материалам, которые могут быть использованы в белых источниках света высокой мощности. .
Изобретение относится к сцинтилляционным материалам, конкретно к двуслойным волоконным сцинтилляторам, предназначенным для регистрации тепловых нейтронов и пригодным для создания на их основе сцинтилляционных волоконных детекторов для радиационного экологического мониторинга территории, контроля космического и техногенного нейтронного фона, для создания комплексов технического контроля за ядерным топливом и изделиями из делящихся материалов, а также для создания антитеррористических комплексов радиационного контроля.
Изобретение относится к светопреобразующему материалу, предназначенному для покрытия парников, теплиц, стен, в качестве материала солнцезащитных зонтов, устройств подсветки и освещения, защитной одежды и элементов такой одежды, суспензий, паст, кремов.

Изобретение относится к области электротехники, в частности к однокомпонентному люминофору с ультрафиолетовым излучением, который может быть использован в люминесцентных лампах для загара кожи, имеющему состав, представленный общей формулой (Y1-x-y-z LaxGdyCez)РO4, где х имеет значение в диапазоне от 0,001 до 0,98, у имеет значение в диапазоне от 0 и до 0,1, z имеет значение в диапазоне от 0,01 и до 0,2, a x+y+z<1.

Изобретение относится к сцинтилляционным материалам, а именно к неорганическим кристаллическим сцинтилляторам, и может быть использовано в технике детектирования ионизирующих излучений для медицинской диагностики, ядерной геофизики, неразрушающего контроля.
Изобретение относится к светопреобразующим материалам, применяемым в сельском хозяйстве, медицине, биотехнологии и легкой промышленности. .

Изобретение относится к сцинтилляционным материалам, а именно к кристаллическим сцинтилляторам, и может быть использовано в технике детектирования ионизирующих излучений для медицинской диагностики, ядерной геофизики, неразрушающего контроля и оценки качества продуктов питания.

Изобретение относится к способу печати, в котором в процессе печати печатная жидкость выбрасывается через одно или несколько узких сопел, или к печатной жидкости, подходящей для такого способа.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для обработки призабойной зоны неоднородных нефтяных пластов, в том числе эксплуатируемых при забойном давлении ниже давления насыщения, в условиях выделения и накопления газа в призабойной зоне, а также при обработке пластов, продуцирующих высоковязкими нефтями.

Изобретение относится к области электротехники и нанотехнологии, в частности к производству материалов электронной техники и квантовой электроники, использующих технологию локализованного нанесения металлических слоев, либо наноструктур на поверхности различных типов для создания элементов и устройств.

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК).

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для преобразования высокочастотного магнитного поля в электрический сигнал.

Изобретение относится к области конструкции и технологии изготовления фотоэлектрических преобразователей (ФП) солнечного излучения в электрический ток и может быть использовано в производстве солнечных фотоэлементов.

Изобретение относится к области компьютерных средств высокопроизводительной обработки информации для разработки наноразмерных систем. .

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия повышенных виброускорений и нестационарных температур.

Изобретение относится к авиационной технике и может быть использовано при разработке малоразмерных беспилотных летательных аппаратов (БПЛА) различного назначения.
Изобретение относится к области абразивной обработки и может быть использовано при изготовлении металлической связки для алмазного инструмента, используемого в строительстве, например, для резки и сверления отверстий в фасадных панелях из материалов типа искусственных гранитов.

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении алмазных инструментов для обработки различных металлических и неметаллических материалов с закреплением алмазных зерен на поверхности корпуса инструмента гальваническим методом.

Изобретение относится к электронной технике, в частности к технологии изготовления тонкопленочных тензорезисторных датчиков давления
Наверх