Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов вт6 и вт16

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов ВТ6 и ВТ16, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента. Заявлен способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ6 и ВТ16. Способ включает азотирование с использованием в качестве плазмообразующей смеси азот-аргон. Азотирование выполняют при температуре 450°С с использованием ионной и электронной компоненты плазмы. Технический результат - повышение эксплуатационных характеристик 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов ВТ6 и ВТ16, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента.

Известен способ ионного азотирования в плазме дугового разряда титановых сплавов при температуре 500-600°с в смеси газов азот-аргон [1]. С помощью данного метода можно эффективно проводить процесс азотирования титановых сплавов ВТ6 и ВТ20. Указанный способ азотирования не позволяет проводить процесс для титановых сплавов в наноструктурном (НС) и/или субмикрокристаллическом (СМК) состояниях, так как при указанных температурах процесса в титановых сплавах в НС и СМК состоянии начнется процесс рекристаллизации. Еще одним недостатком ионного азотирования в плазме дугового разряда является тот факт, что при проведении процесса в данном типе разряда возможно попадание продуктов эрозии катода на поверхность обрабатываемых изделий.

Наиболее близким по своим признакам, принятым за прототип, является способ низкотемпературного азотирования титана и его сплавов в плазме несамостоятельного дугового разряда низкого давления [2]. Процесс азотирования титановых сплавов ВТ1-0 в состоянии поставки, ВТ6 в состоянии поставки, ВТ6 СМК, ВТ16 в состоянии поставки, ВТ16 СМК, ВТ16 закаленный проводился в следующем режиме: вакуумная камера откачивалась до давления р=2·10-2 Па, затем через катодную полость подавался рабочий газ (Ar, N2). После этого подавалось напряжение ~70 В на разрядный промежуток. В результате чего происходило зажигание диффузионной дуги низкого давления с накаленным катодом. В качестве плазмообразующей смеси использовались смеси газов аргон-азот в процентном соотношении (5:95, 12,5:87,5, 25:75). Азотирование выполняли при температуре ~420°С в течение 1 часа. Но этот способ не может быть применен для азотирования титановых сплавов ВТ6 и ВТ16 в различных структурных состояниях в силу того, что используемая температура 420°С и состав газовой смеси при проведении процесса азотирования могут существенно снизить эффективность обработки. Это приведет к формированию тонких модифицированных слоев, которые не обеспечат достаточный уровень технологических характеристик, таких как твердость, износостойкость и коррозионная стойкость. Указанные режимы азотирования титановых сплавов проводятся в течение 1 часа, увеличение длительности процесса может привести к началу рекристаллизации ВТ6 и ВТ16 в СМК и НС состояниях.

Задачей предлагаемого изобретения является повышение эксплуатационных характеристик изделий из титановых сплавов ВТ6 и ВТ16 в различных структурных состояниях, а именно в крупнозернистом, СМК и НС.

Поставленная задача решается тем, что использован способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ6 и ВТ16 в различных структурных состояниях, включающий азотирование титановых сплавов ВТ6 и ВТ16 в крупнозернистом, субмикрокристаллическом и наноструктурном состояниях, используя в качестве плазмообразующей смеси азот-аргон, причем азотирование выполняется при температуре 450°С и используется ионная и электронная компонента плазмы. Время азотирования и количество аргона в плазмообразующей смеси зависит от требуемой толщины и структурно-фазового состава модифицированного слоя.

Предлагаемый способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ6 и ВТ16 позволяет улучшить качество и свойства поверхности изделий из них, при этом сохранить структуру в объеме материала, предварительно сформированную с помощью методов интенсивной пластической деформации. Также стоит отметить, что предлагаемый способ позволяет варьировать время азотирования в зависимости от требуемой толщины модифицированных слоев. Такой результат был получен за счет проведения процесса при температуре 450°С в газовой среде азот-аргон с процентным содержанием аргона от 5 до 95% и использовании элионного режима.

Проведение процесса азотирования по прототипу при температуре 420°С в плазмообразующей среде газовой смеси азот-аргон с содержанием аргона от 5 до 25% приведет к снижению скорости диффузии азота в материал. Температура 450°С является наиболее приемлемой, так как, с одной стороны, не происходит рекристаллизация, а с другой стороны, скорость диффузии азота будет выше чем при 420°С. Соответственно характеристики модифицированных слоев будут лучше, при этом предварительно сформированная структура в объеме материала НС или СМК состояния сохранятся.

На фиг.1 изображена схема экспериментов по низкотемпературному азотированию в плазме несамостоятельного дугового разряда низкого давления: 1 - плазмогенераторы ПИНК; 2 - вакуумная камера; 3 - технологическая оснастка; 4 - образцы; В/Н - источник отрицательного напряжения смещения; ИП-1 и ИП-2 - источники питания плазмогенераторов; ИП-Э - источник питания электронного режима. На фиг.2 изображена морфология поверхности ВТ6 в крупнозернистом состоянии после азотирования.

Азотирование выполняли на ионно-плазменной установке типа ННВ-6.6-И1 (фиг.1). На дверце и верхней стенке вакуумной камеры 2, размерами 600×600×600 мм, располагаются газоразрядные плазмогенераторы ПИНК 1 на основе несамостоятельного дугового разряда низкого давления. Откачка вакуумного объема осуществлялась диффузионным паромасляным насосом Н - 250. Вакуумная камера откачивалась до предельного остаточного давления 3÷5×10-5 Торр (0.4÷0.65×10-3 Па). Азотирование осуществлялось в элионном режиме работы установки. Принцип работы схемы элионного азотирования заключается в следующем - в зависимости от режима работы нагрев и поддержание температуры образцов осуществляется электронной и ионной компонентой плазмы. В ионном режиме (фиг.1) стенки вакуумной камеры 2 являются анодом, а на расположенный в центре камеры манипулятор с оснасткой 3 подается от отдельного источника питания (В/Н) отрицательное напряжение смещения, осуществляя, таким образом, очистку, нагрев и проведение процесса азотирования образцов 4 за счет ионной компоненты плазмы. В электронном режиме анодом является манипулятор с оснасткой 3, в этом случае нагрев осуществляется электронной компонентой плазмы, питание разряда происходит от отдельного источника (ИП-Э).

Пример 1. В качестве материала исследования был выбран титановый сплав ВТ6 в крупнозернистом состоянии, с размером зерна 7-9 мкм. Процесс проводили при температуре 450°С в смеси газов азот-аргон с процентным соотношением 60% N2 - 40% Ar. Время азотирования составляло 40 минут. В результате обработки титанового сплава ВТ6 в крупнозернистом состоянии по данному режиму низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления удалось повысить поверхностную микротвердость на 95%, при этом на поверхности формируются частицы нитрида титана глобулярной формы размерами от 20 до 100 нм, что также способствует повышению микротвердости поверхности (фиг.2).

Пример 2. В качестве материала исследования был выбран титановый сплав ВТ16 в СМК состоянии. Проведения процесса азотирования в течение 60 минут в смеси азот-аргон с процентным соотношением 75% N2 - 25% Ar позволило повысить поверхностную микротвердость на 72%.

Таким образом, предлагаемый способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления позволяет проводить процесс для титановых сплавов ВТ6 и ВТ16 как в крупнозернистом состоянии, так и в НС и/или СМК состояниях.

Список литературы

1. А.А.Ильин, С.В.Скворцова, Е.А.Лукина, В.Н.Карпов, О.А.Поляков. Низкотемпературное ионное азотирование имплантатов их титанового сплава ВТ20 в различных структурных состояниях // Металлы, №2, 2005, с.38-44.

2. Д.С.Вершинин, Т.Н.Вершинина, Ю.Р.Колобов, М.Ю.Смолякова, О.А.Дручинина. Низкотемпературное азотирование титана и его сплавов в плазме несамостоятельного дугового разряда низкого давления // Сб. трудов 8-ой Международной конференции «Взаимодействие излучений с твердым телом», Минск, Беларусь, 23-25 сентября, 2009, стр.160-162.

1. Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ6 и ВТ16, включающий азотирование с использованием в качестве плазмообразующей смеси азот-аргон, отличающийся тем, что азотирование выполняют при температуре 450°С с использованием ионной и электронной компоненты плазмы.

2. Способ по п.1, отличающийся тем, что время азотирования и количество аргона в плазмообразующей смеси зависит от требуемой толщины и структуры модифицированного слоя.



 

Похожие патенты:

Изобретение относится к плазменной химико-термической обработке поверхности изделий и может быть использовано в машиностроении. .

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов.
Изобретение относится к области химико-термической обработки сплавов и может быть использовано для изготовления высокотемпературных деталей и узлов горячего тракта газотурбинных авиационных двигателей и других изделий, работающих при температурах до 1100-1200°С с кратковременным увеличением до 1300°С.

Изобретение относится к металлургии, а именно к способам упрочнения металлов азотированием, и может быть использовано при изготовлении деталей из титановых сплавов, работающих при циклических нагрузках.
Изобретение относится к сварке, а именно к диффузионной сварке слоистых конструкций из титановых сплавов, преимущественно криволинейного профиля, и может быть использовано, например, при изготовлении теплообменников энергетических силовых установок.

Изобретение относится к устройствам для химико-термической обработки сталей и сплавов в газовых средах с использованием автоматического управления. .

Изобретение относится к способам изготовления деталей с упрочненной рабочей поверхностью, в частности к способу получения многослойного покрытия на стальной или чугунной поверхности.

Изобретение относится к области поверхностного упрочнения путем азотирования деталей и может быть использовано при изготовлении широкой номенклатуры деталей и инструмента.
Изобретение относится к порошковой металлургии и способам газовой низкотемпературной химико-термической обработки, в частности к способам азотирования металлических материалов на основе железа.

Изобретение относится к порошковой металлургии и способам газовой низкотемпературной химико-термической обработки, в частности к способам азотирования металлических материалов на основе железа.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из технически чистого титана ВТ1-0, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента
Изобретение относится к химико-термической обработке изделий, получаемых методом порошковой металлургии, а именно к азотированию

Изобретение относится к области металлургии, в частности к сплавам на основе кобальта, упрочняемым азотированием
Изобретение относится к машиностроению, в частности к производству штанг для бурильных машин мелкошпурового бурения (до 4250 мм)

Изобретение относится к области машиностроения и может быть использовано при изготовлении деталей двигателей, а также в медицине и других отраслях промышленности

Изобретение относится к области поверхностного упрочнения путем азотирования деталей. Может использоваться при изготовлении деталей и инструмента, к которым предъявляются требования повышенного сопротивления схватыванию и адгезии в парах трения и коррозионной стойкости в условиях влажного воздуха. Плазменное азотирование деталей проводят путем перемещения детали относительно плазмотрона в зоне плазменной струи, формирующейся в преобразователе потока плазмотрона с щелевым выходным отверстием. В качестве плазмообразующего газа используют азот, являющийся одновременно легирующим элементом. Полученный легированный азотом поверхностный слой обеспечивает повышенную износостойкость, усталостную прочность и сопротивление коррозии в условиях абразивного изнашивания с минимальным уровнем деформаций и короблений деталей. 1 з.п. ф-лы, 2 ил., 2 пр.
Изобретение относится к области металлургии. Для улучшения свариваемости стальных полос с цинковым покрытием получают полосу из стали, содержащей, вес.%: С 0,04-1,0, Мn 9,0-30,0, Аl 0,05-15,0, Si 0,05-6,0, Cr ≤6,5, Cu ≤4, Ti+Zr ≤0,7, Nb+V ≤0,5, остальное - железо и неизбежные примеси, подвергают ее отжигу и затем на нее электролитическим методом наносят покрытие из цинка или цинкового сплава. При этом в процессе отжига стальной полосы при температурах от 800 до 1000°С в атмосфере с содержанием N2-H2 в результате реакции с содержащимися в стали элементами образуется приповерхностная, обогащенная нитридами область, препятствующая при сварке стальной полосы с покрытием проникновению расплавленного цинка в основной материал стали. 3 н. и 6 з. п. ф-лы.

Группа изобретений относится к способу упрочнения стальных деталей, устройству для осуществления способа и упрочненным в соответствии с этим способом стальным деталям. Осуществляют нагрев деталей до температуры от 950 до 1200°C, при этом 30-100% поверхности каждой детали нагревают с помощью прямого теплового излучения, падающего под пространственным углом 0,5π-2π нагревательного устройства. Воздействуют на детали содержащим углерод газом и/или содержащим азот газом при температуре от 950 до 1200°C и давлении ниже 100 мбар. Выдерживают детали в атмосфере упомянутого газа при давлении ниже 100 мбар при температуре от 950 до 1200°C. В случае необходимости проводят одно- или многократное повторение предыдущих двух этапов и осуществляют охлаждение деталей. Устройство для упрочнения стальных деталей, содержащее две или больше камер науглероживания, по меньшей мере одну камеру охлаждения и передаточную систему для манипулирования стеллажами для деталей. Камера охлаждения выполнена с возможностью соединения с каждой из камер науглероживания через одну или несколько вакуумных заслонок. Каждая камера науглероживания имеет приемный элемент для стеллажа и по меньшей мере два нагревательных элемента, которые расположены так, что отдаваемое ими излучение попадает на поверхность каждой из деталей под средним пространственным углом от 0,5π до 2π. Обеспечивается упрочнение деталей с уменьшенным термическим искривлением, уменьшение проскальзывания или потерь на трение обработанных деталей. 4 н. и 36 з.п. ф-лы, 11 ил., 2 пр.
Изобретение относится к области термической обработки деталей из легированного чугуна с различной формой графита. Способ включает контроль исходной структуры, термическую обработку, азотирование, механическую обработку, при этом исходную структуру детали контролируют на содержание графита, цементита и феррита, термообработку для деталей из чугуна, содержащего в структуре графит шаровидной формы, до 10% графита нешаровидной формы и до 20% феррита, проводят путем высокого отпуска и старения, при содержании в структуре от 10 до 80% графита нешаровидной формы и от 20 до 85% феррита путем аустенизации, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита, изотермической выдержки, высокого отпуска и старения, а при содержании в структуре от 10 до 80% графита нешаровидной формы, от 20 до 85% феррита и до 80 % цементита путем предварительного диффузионного отжига, аустенизации, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита, изотермической выдержки, высокого отпуска и старения, после термообработки контролируют структуру деталей, осуществляют механическую обработку поверхности детали с припуском, обеспечивающим при последующей после азотирования механической обработке удаление слоя ε-фазы, после чего участки детали с наименьшей толщиной стенки подвергают деформационному наклепу, затем детали фосфатируют, проводят низкотемпературное азотирование, рабочую поверхность детали подвергают электрохимическому травлению, хонингуют и фосфатируют. Изобретение позволяет получить в деталях из легированного чугуна с сечением различной жесткости и графитом различной формы, с повышенным количеством феррита и цементита минимальную деформацию при азотировании. 6 з.п. ф-лы, 1 пр.

Изобретение относится к способу выращивания пленки нитрида галлия путем автосегрегации на поверхности подложки-полупроводника из арсенида галлия и может быть использовано при изготовлении светоизлучающих диодов, лазерных светодиодов, а также сверхвысокочастотных транзисторных приборов высокой мощности. Подложку помещают в атмосферу прокачиваемого со скоростью 5-10 л/ч газа в виде газообразного азота или аргона с добавками азота и водорода, при этом осуществляют нагрев подложки до температуры 600-1100°С, выдержку при указанной температуре в течение 1-3 ч и охлаждение в печи. В частных случаях осуществления изобретения аргон с добавками азота и водорода содержит до 15% азота и до 4% водорода. Перед прокачкой газа подложку размещают в трубчатом алундовом тигеле, который помещают в кварцевую ампулу, при этом прокачку упомянутого газа осуществляют с одновременным нагревом подложки, выдержкой и охлаждением. Нагрев подложки осуществляют до 1050°С. Обеспечивается упрощение процесса выращивания пленок и снижение его длительности, а также получение ориентированных монокристаллических слоев разнообразных видов (иглы, нити, пластины). 3 з.п. ф-лы, 3 ил., 3 пр., 4 табл.
Наверх