Способ получения сфероидизированных полидисперсных порошков

Изобретение относится к технологии производства неорганических мелкодисперсных наполнителей, которые могут быть использованы в различных отраслях техники, в частности к получению сфероидизированных полидисперсных порошков. Проводят загрузку исходного сырья в виде компонентов неорганических порошков минералогического состава дисперсностью до 1 мм, в том числе с содержанием органических включений, в камеру плазмотрона и обрабатывают исходное сырье в плазменном потоке до получения сфероидизированных частиц. При этом обработку в плазменном потоке производят при мощности 100 кВА. Затем проводят охлаждение и выгрузку полученного продукта. На выходе плазмотрона охлажденный продукт в виде микрошариков классифицируют по заданным свойствам для последующего использования. Техническим результатом является расширение диапазона дисперсности исходного сырья, упрощение технологического процесса и расширение диапазона классификации полученного продукта. 4 з.п. ф-лы, 1 табл.

 

Изобретение относится к химической промышленности, а именно к технологии производства неорганических мелкодисперсных наполнителей, которые могут быть использованы в различных отраслях техники.

Сфероидизированные полидисперсные порошки являются материалами, которые в настоящее время имеют большую востребованность, благодаря их уникальным свойствам обеспечивать улучшение физических параметров материалов и устройств, в которых они применяются в качестве наполнителей, защитного покрытия и др.

Мелкодисперсные наполнители в виде микрошариков-микросфер получают, в частности, путем низкотемпературной электроплазменной обработки дисперсных тугоплавких материалов.

Из уровня техники известны способы изготовления стеклянных микрошариков и других сфероидизированных порошков, полученных из тугоплавких материалов. За последние два десятилетия запатентовано значительное количество изобретений, в том числе отечественных, на способы электроплазменной обработки тугоплавких порошковых материалов, преимущественно неорганических веществ, с целью их сфероидизации.

В патенте РФ №847647, опубликованном 27.11.2005 по индексу МПК С03В 19/10, заявлен способ изготовления стекломикрошариков, изготовленных из гранул кварцевой крупки, включающий предварительную промывку и последующее прокаливание гранул в факеле низкотемпературной плазмы при температуре 900-2600°С до сфероидизации.

В патенте РФ №2081858, опубликованном 20.06.1997 по индексу МПК С03В 19/10, заявлен способ получения стеклянных микрошариков, используемых в качестве мелкодисперсных наполнителей пластмасс в химической промышленности, для струйно-абразивной обработки металлоизделий в машиностроении и других отраслях промышленности. Способ заключается в подготовке микропорошков стекла путем совмещения процессов измельчения исходного стеклогранулята и классификации порошков стекла. Подготовленный микропорошок подают в печь формования с помощью предварительно нагретого сжатого воздуха. Формование микрошариков осуществляют в газопламенном потоке. Отформованные микрошарики охлаждают и подвергают дополнительной двухступенчатой классификации по размерам.

В патенте РФ №2233808, опубликованном 20.03.2004 по индексу МПК С03В 19/10, описан способ изготовления стеклянных шариков, цельных и пустотелых для фильтров различного назначения. Способ включает измельчение исходного сырья, предварительную термическую обработку измельченного стеклопорошка в газопламенном потоке при температуре 500-900°С, его классификацию для отделения оплавленных частиц от продуктов сгорания, разделение по размерным группам и удаления стеклянной пыли, термическое формование стеклошариков в печи при огневом потоке 1000-1400°С, последующее охлаждение и классификацию по размерным группам.

Данный способ относится конкретно к технологии изготовления стеклошариков и также, как и предыдущие аналоги, включает предварительную обработку сырья для получения заявленного результата - получение определенных фракций, характеризующихся размерами составляющих частиц продукции.

В патенте РФ №2301202, опубликованном 20.02.2007 по индексу МПК С03В 19/10, заявлен способ изготовления стеклянных шариков или микросфер, как цельных, так и пустотелых, предназначенных для изготовления теплозащитных химически стойких облегченных материалов и сферопластиков. Способ включает измельчение исходного сырья, подачу его в печь, предварительную термическую обработку и классификацию по размерным группам, подачу стеклянного порошка в печь, термическое формование стеклянных шариков или микросфер раздельно по каждой группе стеклопорошка, их охлаждение и отделение от продуктов сгорания.

Данный способ предполагает использование большой совокупности довольно габаритных устройств.

В приведенных выше аналогах защищены способы получения стеклянных микрошариков, в которых большое внимание уделяется операциям предварительной обработки исходного сырья. Такие операции представляют собой в совокупности процесс значительной трудоемкости с использованием для этой цели габаритных установок. К тому же операции очистки и размельчения сырья сопровождаются загрязнением окружающей атмосферы, хотя и предусматривает использование пылеуловителей и других приспособлений, но это полностью не решает задачу экологической чистоты производства.

В патенте РФ №2133172, опубликованном 20.07.1999 по индексу МПК B22F 9/02, заявлен способ переработки металлических отходов, в частности стружки, где применяется размол исходного сырья в шаровой мельнице, который вводят в плазменную струю в количестве 7-10 кг/ч и обрабатывают в потоке низкотемпературной плазмы при подаваемом токе 300-600 А. Данным способом получают гранулированный порошок, который разделяют на фракции по размеру. Здесь тоже требуется подготовка исходного сырья, а также присутствует существенное ограничение по весу обрабатываемого материала.

В патенте BY №9772, опубликованном 30.10.2007 по индексу МПК B22F 9/02, описан способ получения сфероидизированных полидисперсных керамических порошков, который включает гранулирование и обработку исходного материала в плазменном потоке. В качестве исходного материала используют конгломераты из керамических порошков дисперсностью не более 200 мкм, которые подают в плазму со скоростью 200-400 г/ч при мощности плазменной струи 56-80 кВА.

Данное техническое решение относится к области порошковой металлургии. В способе предполагается возможность использования сырья в виде керамических, металлокерамических порошков, в том числе и отходов производства твердых материалов, например абразивного производства.

Патент BY №9772 выбран в качестве прототипа нового изобретения, как наиболее близкий по назначению и решению задачи получения полидисперсных порошков с высокой степенью сфероидизации.

Однако в прототипе ограничено применение по виду исходного материала в виде конгломератов керамических порошков дисперсностью не более 200 мкм. Способ характерен большим количеством подготовительных операций исходного материала, которые трудоемки и требуют соответствующего оборудования. Производительность процесса довольно низкая. Экономические показатели производства изначально зависят от применяемого сырья, которое в данном случае весьма недешево, так как цена отходов керамики значительно выше, чем, например, цена минерального сырья. Диапазон классификации полученного продукта узкий, т.к. связан только с размерностью полученных частиц массы продукта.

Задачей настоящего изобретения является расширение диапазона дисперсности исходного сырья, упрощение технологического процесса, увеличение производительности, расширение диапазона классификации полученного продукта и повышение экономических показателей в целом.

Технический результат достигается за счет подбора и использования доступного недорогого минерального сырья, в том числе в виде отходов других производств, увеличения объема и массы обрабатываемого в плазматроне материала, обеспечения возможности классифицирования полученных частиц по множеству различных параметров.

Поставленная задача решается в способе получения сфероидизированных полидисперсных порошков, включающем загрузку исходного сырья в виде компонентов неорганических порошков в камеру плазмотрона, обработку исходного сырья в плазменном потоке до получения сфероидизированных частиц, их последующее охлаждение и выгрузку полученного продукта, в котором, в отличие от прототипа, в качестве исходного сырья используют порошки минералогического состава дисперсностью до 1 мм, в том числе с содержанием органических включений, обработку в плазменном потоке производят при мощности 100 кВА, на выходе плазмотрона охлажденный продукт в виде микрошариков классифицируют по заданным свойствам для последующего использования.

Минералогический состав может представлять собой смесь компонентов, например, стекломуки с минеральным фракционированным порошком и/или порошком композитов.

Минералогический состав может представлять собой оксиды, добываемые из песков и другого минерального сырья.

Минералогический состав может представлять собой отходы пескоструйной обработки, дробеструйной обработки, водно-абразивной резки, прошедшие очистку от крупных примесей.

Классифицирование полученного охлажденного продукта в зависимости от задач его последующего использования осуществляют по размеру, удельному весу, магнитным свойствам, сыпучести, гидрофильности, гидрофобности, трибологическим и оптическим свойствам.

Загрузку сырья возможно осуществлять в различных количествах, предпочтительно от 1 до 150 кг/ч в зависимости от вида обрабатываемого сырья.

Для осуществления данного способа применим высокочастотный плазмотрон мощностью от 20 до 100 кВА, предпочтительно 80-100 кВА, который обеспечивает процесс расплавления тугоплавких материалов с образованием микрочастиц сферической формы обрабатываемых составов. При этом температура плазмы находится в диапазоне 8000-10500°С и имеет постоянное значение в зависимости от плазмообразующего газа.

Отличительные признаки заявляемого способа обеспечивают расширенный диапазон полидисперсности за счет применения доступного минерального сырья, представляющего собой широкий класс тугоплавких материалов, которые в виде микрошариков в больших масштабах могут быть затребованы в различных отраслях. Использование широкого класса отходов различных производств, включая абразивные, строительные, металлургические, химические, отходы горнодобывающей промышленности, позволяет удешевить производство микрошариков за счет цены сырья, а также за счет исключения подготовительных операций обработки сырья, которые применяются в известных способах.

Причем в качестве исходного сырья могут быть различные смеси минеральных компонентов по составам и фракциям. Наиболее распространенным видом минерального сырья являются оксиды, которые находят максимальное применение в виде сфероидизированных микрочастиц.

Исключение подготовительных операций обработки сырья обеспечивает чистое производство. Классифицирование микрошариков на выходе уже не создает лишних загрязнений, тем более в том количестве, которое присутствует в аналогах и в прототипе.

В предлагаемом способе расширен диапазон первичных фракций сырья до 1 мм, т.к. процесс плазменной обработки в заявленном режиме обеспечивает обработку сырья, состоящего из частиц от самых минимальных размеров до 1 мм.

Особенное значение в новом способе уделяется процессу классификации выходного продукта. Виды классификации в зависимости от задачи получения микрошариков из конкретного материала, их последующего использования, назначения, могут быть различными:

- по размеру,

- по удельному весу,

- по магнитным свойствам,

- по свойству текучести - сыпучести,

- по гидрофильно-гидрофобным свойствам,

- по трибологическим свойствам (особенности по трению и износу),

- по оптическим свойствам.

Все операции классификации на выходе плазмотрона охлажденного готового продукта являются достаточно чистым производством.

В результате предложенный способ позволяет получать широкий спектр различных материалов. При этом производительность процесса достаточно высокая и составляет 60-80% выхода годного в зависимости от используемого сырья, а при обработке сырья, прошедшего предварительную очистку, может составлять 96-98%.

Пример конкретной реализации №1. Исходное сырье в виде мелкодисперсной шихты оксида алюминия, имеющей средний размер фракций 80 мкм и более в количестве 50 кг загружают в высокочастотный плазмотрон типа ВЧ-П/50, в его входную емкость - дозатор. Данный плазмотрон имеет следующие параметры источника питания: ток анода Ia - 1,5-3,0 А, ток сетки Ig - 8,5-10 А, анодное напряжение Ua - 8,5-11 кВ. Температура плазмы - 1000°С. Режим плазменной обработки непрерывный. Время сфероидизации частиц, пролетающих сквозь плазму, составляет 1-5 микросекунд. Обработка всего объема загруженного сырья происходит в течение 2-2,5 часов.

Охлаждение сфероидизированных частиц происходит естественным путем в реакторной камере плазмотрона в ее охлажденной выводной части.

На выходе плазмотрона охлажденные микрошарики попадают в приемную емкость, после чего их взвешивают. В результате получили 49,3 кг микрошариков оксида алюминия, что составило ~ 98% выхода годного. Микрошарики классифицировали по размерам частиц, что показало наличие фракций от 20 до 80 мкм примерно равных количеств по весу.

В таблице приведены данные по реализации способа изготовления сфероидизированных порошков из различных исходных материалов минералогического состава.

Таблица
При-мер
Вид исходного сырья Количество обрабатываемого исходного сырья; размер фракций Режим обработки Выход годного продукта Вид классифицикации полученного продукта
1 Al2O3 10 кг Ua - 10 кВ 9,385 кг По размеру, ситовым способом
Фракции 100-300 мкм Ia - 10 А
Ig - 2,7 A
2 Смесь: Всего - 10 кг Ua - 10 кВ Всего: 1/ по размеру;
Стекломука; 5 кг Ia - 10 А 8,79 кг 2/ по магнитным свойствам;
более 100 мкм Стекло - 4,31 кг
Ig - 2,9 A 3/ по оптическим свойствам;
Отходы абразивного граната 5 кг Гранат - 4,48 кг
100-300 мкм
4/ по удельному весу
3 Смесь: Всего - 10 кг Ua - 10 кВ Всего: 1/ по магнитным свойствам;
Порошок магнетита; 5 кг; до 600 мкм Ia - 10 A 8,78 кг
Магнетит - 3,85 кг 2/ по размеру;
Ig - 2,7 A 3/ по трибологическим свойствам
Стекломука 5 кг; до 600 мкм Стекло - 4,93 кг
4 Смесь: Всего - 8 кг Ua - 10 кВ Всего: 1/ по размеру;
Стекломука; 5 кг; 30-80 мкм Ia - 10 A 6,96 кг 2/ по магнитным свойствам;
Отходы абразивного граната, прошедшие очистку - рециклинг 3 кг Ig - 2,85 A Стекло - 4,01 кг 3/ по удельному весу;
100-200 мкм
4/ по сыпучести;
Гранат - 2,95 кг 5/ по оптическим свойствам
5 Смесь оксидов из песков 4-х месторождений; Всего 50 кг Ua - 10 кВ Всего: 1/ по размеру
40 кг оксидов Ia - 9,5 A 44,71 кг 2/ по гидрофильности
100-600 мкм Ig - 2,4 A Оксиды - 35,7 кг 3/ по гидрофобности;
4/ по сыпучести
Стекломука 10 кг стекломуки Стекло - 9,01 кг
До 160 мкм

В таблице приведены примеры получения микрошариков из различного исходного сырья, которое в зависимости от производственных нужд может использоваться в виде различных вариантов смесей.

Следует отметить, что применение стекломуки в отдельных случаях улучшает сыпучесть смеси, в которой она присутствует.

При классифицировании продукта по оптическим свойствам, как правило, определяют коэффициенты отражения и преломления материала.

При классифицировании продукта по удельному весу применяют воздушный гравитационный классификатор или его аналог.

1. Способ получения сфероидизированных полидисперсных порошков, включающий загрузку исходного сырья в виде компонентов неорганических порошков в камеру плазмотрона, обработку исходного сырья в плазменном потоке до получения сфероидизированных частиц, их последующее охлаждение и выгрузку полученного продукта, отличающийся тем, что в качестве исходного сырья используют порошки минералогического состава дисперсностью до 1 мм, в том числе с содержанием органических включений, обработку в плазменном потоке производят при мощности 100 кВА, на выходе плазмотрона охлажденный продукт в виде микрошариков классифицируют по заданным свойствам для последующего использования.

2. Способ по п.1, отличающийся тем, что минералогический состав представляет собой смесь компонентов, например стекломуки с минеральным фракционированным порошком и/или порошком композитов.

3. Способ по п.1, отличающийся тем, что минералогический состав представляет собой оксиды, добываемые из песков и другого минерального сырья.

4. Способ по п.1, отличающийся тем, что минералогический состав представляет собой отходы пескоструйной обработки, дробеструйной обработки, водноабразивной резки, прошедшие очистку от крупных примесей.

5. Способ по п.1, отличающийся тем, что классифицирование полученного охлажденного продукта осуществляют по размеру, удельному весу, магнитным свойствам, сыпучести, гидрофильности, гидрофобности, трибологическим и оптическим свойствам.



 

Похожие патенты:

Изобретение относится к получению частиц, в частности наночастиц в ионной жидкости. .

Изобретение относится к порошковой металлургии, к получению композиционных керамических порошков, содержащих нитрид кремния и нитрид титана. .
Изобретение относится к области порошковой металлургии, в частности к получению металлов и сплавов в виде порошков, и может быть использовано при получении высокодисперсных металлических порошков сферической формы.

Изобретение относится к аэрозольным технологиям и может быть использовано как для получения ультрадисперсных порошков металлов, так и для создания больших аэрозольных объемов из плотного субмикронного проводящего аэрозоля в различных технологических процессах.

Изобретение относится к области получения порошковых материалов, в том числе к способам и устройствам для получения нанопорошков чистых химических веществ, их однородных смесевых составов и сложных соединений.

Изобретение относится к порошковой металлургии, в частности, к способам и устройствам для получения металлических кластеров в сверхзвуковом потоке. .

Изобретение относится к области порошковой металлургии и может быть использовано в электро- и радиотехнической промышленности. .

Изобретение относится к области переработки твердых отходов, более конкретно к переработке металлической стружки с получением гранулированного порошка для использования в различных областях порошковой металлургии.
Изобретение относится к области металлургии, а именно области получения магнитных сплавов, и может быть использовано при получении магнитных порошков. .
Изобретение относится к области нанесения защитных металлических покрытий, а именно цинковых покрытий на стальные изделия в порошковых смесях термодиффузионным методом

Изобретение относится к порошковой металлургии, а именно к получению ферритовых магнитных порошков

Изобретение относится к плазменной технологии и может быть использовано для получения модифицированных ультрадисперсных порошков в едином технологическом цикле
Изобретение относится к абразивной и дробеструйной обработке деталей. Металлокерамическая дробь содержит 3-40 мас.% керамического материала, 3-50 мас.% пылевидных отходов сталеплавильного производства и остальное - пиритные огарки. Обеспечивается переработка огарков и отходов сталеплавильного производства, а также улучшение эксплуатационных свойств дроби, в частности твердости и прочности. 2 з.п. ф-лы, 3 табл.

Изобретение относится к области выделения частиц заданной дисперсности из суспензии и может быть применено в промышленности при получении нанодисперсных порошков для изготовления высокопрочных изделий с улучшенными свойствами. Устройство для выделения нанодисперсных порошков оксидов металла из суспензии содержит корпус, выполненный в виде двух сообщающихся между собой емкостей из диэлектрического материала, наполненных суспензией, содержащей дистиллированную воду и частицы оксидов металлов, и соединенных между собой трубопроводом с возможностью разделения, при этом одна из емкостей выполнена с возможностью подключения к ней положительного потенциала, а другая - отрицательного потенциала и с возможностью перемещения в нее под действием электрического поля более крупных по размерам частиц из емкости с положительным потенциалом. Техническим результатом изобретения является увеличение производительности за счет сокращения времени выделения частиц и увеличение срока службы. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в производстве водородсодержащих наночастиц. Способ получения наночастиц металлов, насыщенных водородом, включает лазерную абляцию массивной металлической мишени, помещенной в жидкость с протонным типом проводимости. В процессе абляции на мишень подается отрицательное смещение по отношению к погруженному в рабочую жидкость аноду. Устройство для получения указанных наночастиц включает абляционную камеру с пробкой и входным оптическим окном для лазерного излучения, массивную металлическую мишень, помещенную в жидкость, заполняющую абляционную камеру. Вне пределов абляционной камеры расположен лазер с оптической системой, фокусирующей лазерное излучение через оптическое окно на мишень. Устройство снабжено расположенным вне абляционной камеры источником постоянного тока и погруженными в рабочую жидкость анодом, выполненным из химически нейтрального проводящего материала, и катодом, выполненным из материала с высокой электропроводностью. Катод электрически соединен с мишенью. Изобретение позволяет получить насыщенные водородом наночастицы алюминия, титана, палладия, золота, железа, увеличить скорость их получения, снизить энергетические затраты, упростить процесс и оборудование. 2 н. и 4 з.п. ф-лы, 1 ил., 3 пр.

Изобретение относится к порошку из кермета. Порошок из кермета содержит: a) от 50 до 90 мас.% одного или нескольких твердых веществ и b) от 10 до 50 мас.% металлической композиции матрицы. Массовые процентные данные относятся к общей массе порошка кермета. Металлическая композиция матрицы содержит: i) от 40 до 75 мас.% железа и никеля, ii) от 18 до 35 мас.% хрома, iii) от 3 до 20 мас.% молибдена, iv) от 0,5 до 4 мас.% меди. Указанное содержание металлов от i) до iv), в каждом случае, относится к общей массе металлической композиции матрицы, а массовое отношение содержания железа к никелю находится в пределах от 3:1 до 1:3. В результате порошок образует при термическом распылении устойчивые покрытия без значительных потерь механических показателей износостойкости и кавитационной стойкости или устойчивости в присутствии хлорида. 6 н. и 22 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к мелкодисперсному получению порошка титана. Способ включает активирование исходного материала, гидрирование, измельчение полученного гидрида титана, термическое разложение гидрида титана в вакууме и измельчение образовавшегося титанового спека. В качестве исходного материала используют слиток, который получают вакуумным переплавом титанового сырья в медном водоохлаждаемом кристаллизаторе и кристаллизацией слитка при удельном тепловом потоке через поверхность кристаллизатора (3,3-3,9)⋅106 Вт/м2. Активирование ведут в две стадии: сначала обработкой в растворе, содержащем воду, азотную и фтористоводородную кислоты при соотношении компонентов H2O:HNO3:HF, равном (0,9÷1,1):(0,9÷1,1):(0,17÷0,23), а затем в камере гидрирования, содержащей хлористый водород в объеме 0,01-0,015% объема камеры. Гидрирование ведут при избыточном давлении водорода в камере гидрирования 1,1-2,0 атм до содержания водорода в титане 350-410 л/кг. Обеспечивается повышение выхода годного порошка с гранулами округлой формы размером 20-50 мкм. 1 табл.

Изобретение относится к области получения порошковых материалов, в том числе к способам и устройствам для получения нанопорошков, их точных смесевых составов и соединений. Способ получения нанопорошка соединений и смесевых составов импульсно-периодическим лазерным излучением включает испарение вещества излучением лазера с последующей конденсацией испаренного вещества в потоке газа, формирование распределения интенсивности лазерного излучения в пятне фокусировки на испаряемом материале в виде кольцевой структуры и осуществление регулирования распределения интенсивности с обеспечением интенсивности первого максимума от 30% до 80% мощности лазерного излучения. Оставшуюся часть энергии перераспределяют между 2, 3 и последующими максимумами интенсивности. Длительность импульса лазерного излучения регулируют от 100 мкс до 100 мс со скважностью импульсов от 2 до 10. Устройство для получения нанопорошка соединений и смесевых составов импульсно-периодическим лазерным излучением содержит испарительную камеру с испаряемым веществом, лазер с фокусирующей линзой, систему перемещения испаряемого вещества и лазерного луча относительно друг друга, обеспечивающую многократно повторяющееся сканирование испаряемого вещества, систему для прокачки газа и улавливания нанопорошка. Устройство снабжено пространственным фильтром лазерного излучения, установленным перед фокусирующей линзой, с возможностью преобразования распределения лазерного излучения в ближней зоне в кольцо и регулирования коэффициента увеличения, М=a1/а2, от 1,25 до 4, где a1 и a2 - наружный и внутренний радиусы кольца, и длительности импульса излучения от 100 мкс до 100 мс со скважностью импульсов от 2 до 10. Обеспечивается получение нанопорошков неметаллов сложных соединений и точных смесевых составов. 2 н.п. ф-лы, 2 ил.
Изобретение относится к способу получения нанопорошка неметалла. Осуществляют испарение мишени излучением лазера с последующей конденсацией испаренного вещества в потоке газа. Испаряемая мишень содержит испаряемый материал и химическое соединение переходного металла, поглощающие излучение на длине волны используемого для испарения данного вещества лазера. Концентрация химического соединения переходного металла составляет от 0,0001 до 10 мольных % испаряемого материала. В частных случаях осуществления изобретения используют излучение твердотельного лазера, работающего на ионах переходных металлов, при этом в качестве химического соединения мишени используют химическое соединение переходного металла, на ионах которого работает лазер. В качестве химического соединения мишени используют вид химического соединения переходного металла, которому соответствует испаряемый материал, при этом при испарении оксидов используют оксиды переходного металла, а нитридов - нитриды переходного металла. В качестве химического соединения мишени используют химическое соединение переходного металла, разлагаемое в атмосфере кислорода. Обеспечивается повышение эффективности процесса получения нанопорошков неметаллов с помощью испарения вещества излучением лазера. 3 з.п. ф-лы.
Наверх