Способ получения нанопорошков нитрида титана

Изобретение относится к химической промышленности и может быть использовано для получения наноразмерных порошков плазмохимическим методом. Способ получения нанопорошка нитрида титана включает подачу прекурсора в камеру испарителя-реактора, обработку в потоке азотной плазмы, последующее охлаждение в потоке азота и улавливание целевого продукта на поверхности фильтра. В качестве прекурсора используют порошок никелида титана с размером частиц не более 40 мкм. Предлагаемый способ позволяет получать композиционный наноразмерный порошок, состоящий из частиц нитрида титана с оболочкой из никеля. 2 ил.

 

Изобретение относится к химической промышленности и может быть использовано для получения наноразмерных порошков плазмохимическим методом.

Известен способ получения композиционного порошка Ni-TiN путем азотирования NiTi (Касимцев А.В., Левинский Ю.Г., Жигунов В.В. // Получения композиционного порошка Ni-TiN азотированием никелида титана. Журнал «Известия вузов. Порошковая металлургия и функциональные покрытия». 2008. №2). Приведены экспериментальные данные, показывающие, что процесс протекает во внешнем режиме с разложением никелида титана NiTi через промежуточную фазу Ni3Ti на нитрид титана и твердый раствор титана в никеле Ni(Ti). Установлено, что при температуре 1000-1200°С процесс азотирования должен завершиться формированием нитрида титана стехиометрического состава и никеля, практически не содержащего титан. Таким образом, способ позволяет получить гетерогенную смесь порошков нитрида титана и никеля.

Однако способ не позволяет получить порошки с частицами наноразмера. Кроме того, порошок состоит из отдельных частиц нитрида титана и никеля, и, следовательно, не имеет однородной структуры.

Известен способ получения порошков наноразмера, включающий обработку в газовой среде порошков исходных компонентов тепловой энергией, в частности низкотемпературной плазмой, с целью получения перенасыщенного пара в результате испарения исходных порошков с последующим осаждением конечного продукта в виде порошка при охлаждении и сбор нанофракции порошка на фильтре (патент US 7081267, МПК B05D 5/12, 2006). Например, для получения наноразмерного порошка нитрида молибдена Мо2О путем обработки прекурсора-порошка оксида молибдена в низкотемпературной плазме с использованием в качестве плазмообразующего газа аргона. В реакционную зону вводят смесь аммиака и водорода в качестве реакционных газов. Смесь прекурсора и реакционных газов подают в плазменный поток при температуре 3000-5000 К, а затем поток пара охлаждают при прохождении выпускного отверстия в диапазоне давлений 100-500 Торр. Порошок отделяют от газа на охлаждаемый спиральный, а затем решетчатый фильтр.

Использование плазменной технологии в известном способе позволяет получить только нанопорошки индивидуальных соединений, недостатком способа является невозможность получения композиционных порошков. Кроме того, недостатком является достаточная сложность способа, поскольку в нем используется как плазмообразующий газ, так и смесь реакционных газов.

Наиболее близким к заявляемому техническому решению является способ получения наноразмерного порошка нитрида титана в потоке азотной плазмы (Керметы / Под ред. П.С.Кислого. Киев: Наук. думка, 1985. 169-171 с.) (прототип). В известном способе смешивали порошки никеля и титана с последующей обработкой плазменной струей по режимам, разработанным для получения нитрида титана, в потоке азотной плазмы СВЧ-разряда. Порошки исходных металлов с размерами частиц 20-60 мкм вводили в высокотемпературный поток за зоной разряда, при этом среднемассовая температура составляла 5800-6400 К, скорость потока 20-25 м/с. Испарение металлов осуществлялось в восходящем потоке азота, образование нитридов и перемешивание компонентов происходило в водоохлаждаемом реакторе. Продукты взаимодействия охлаждались и улавливались в циклоне и на поверхности рукавного фильтра.

Электронно-микроскопические исследования порошков, полученных известным способом, показали, что монокристальные частицы TiN правильной кубической формы с размерами 10-45 нм равномерно перемешаны с частицами никеля в виде более крупных капель; и только в некоторых случаях никель обволакивает частицы нитрида титана.

Таким образом, недостатком способа является отсутствие полного завершения процесса образования композиционного порошка, а именно получение наноразмерного порошка, состоящего из частиц нитрида титана, плакированного никелем.

Перед авторами стояла задача разработать способ получения наноразмерного порошка, состоящего из частиц нитрида титана, плакированных никелем.

Поставленная задача решена в способе получения нанопорошка нитрида титана, включающем подачу прекурсора в камеру реактора-испарителя, обработку в потоке азотной плазмы, последующее охлаждение в потоке азота и улавливание целевого продукта на поверхности фильтра, в котором в качестве прекурсора используют порошок никелида титана с размером частиц не более 40 мкм.

В настоящее время из патентной и научно-технической литературы не известен способ получения нанопорошка нитрида титана, плакированного никелем, путем обработки в потоке азотной плазмы с использованием в качестве прекурсора порошка никелида титана с размером частиц не более 40 мкм.

Исследования, проведенные авторами, позволили установить, что использование в качестве прекурсора порошка никелида титана в случае обработки его в потоке азотной плазмы обусловливает осуществление наряду с процессом испарения исходного порошка химического взаимодействия в газовой фазе титана и азота. Таким образом, в предлагаемом способе азот является не только плазмообразующим газом, но и обеспечивает получение нитрида титана. При этом в предлагаемых условиях проведения процесса основное количество никеля из газовой фазы, конденсируясь при охлаждении, осаждается на частицах нитрида титана, образуя оболочку. Как показали экспериментальные исследования, использование никелида титана, например, стехиометрического состава обеспечивает полное завершение процесса плакирования, что подтверждает улавливание на фильтре только частиц нанопорошка TiN с оболочкой из Ni размером не более ста нанометров. Использование прекурсора с размером частиц не более 40 мкм обеспечивает получение целевого процесса с частицами наноразмера, как показали экспериментальные исследования, в случае увеличения размера частиц прекурсора размер частиц целевого продукта значительно увеличивается.

Предлагаемый способ может быть осуществлен следующим образом.

Порошок интерметаллида NiTi с частицами крупностью не более 40 мкм обрабатывают в потоке азотной плазмы, для чего помещают в дозатор поршневого типа и пневмотоком подают в камеру реактора-испарителя установки, оборудованной плазмотроном. Порошок (150-200 г/ч) вводят навстречу потоку плазмы, скорость которого составляет 50-55 м/с. Температура азотной плазмы в камере реактора-испарителя составляет 4000-6000°С. При обработке порошка никелида мощность составляет 2,5 кВт, расход плазмообразующего газа - 6,0 нм3/ч, производительность подачи порошка в плазменный поток - 2,5-3,5 г/мин. В качестве плазмообразующего и одновременно реакционного газа используют азот технический марки ГОСТ 9293-74 (N2 - 99,95%; O2 - 0,05%). Полученный продукт в потоке азота поступает и охлаждается в водоохлаждаемой закалочной камере, расположенной в нижней части реактора-испарителя, после чего улавливается на поверхности тканевого фильтра.

Фазовый состав полученного порошка исследовали методами рентгенофазового анализа (модернизированный в цифровой дифрактометр ДРОН-УМ1), включая количественный фазовый анализ (программа STOE WinXPOW). Форму и размеры частиц порошковой смеси определяли методами сканирующей микроскопии: растровой электронной микроскопии (РЭМ JSM6390LA фирмы JEOL) и сканирующей туннельной микроскопии (СТМ СММ-2000Т фирмы «Протон - МИЭТ»). Порошок взбалтывали в ацетоне с помощью ультразвука в ультразвуковой мойке (UM 0,5 фирмы Unitra). В образовавшуюся взвесь опускали токопроводящую подложку (ситалл с TiN покрытием) со средней квадратичной шероховатостью поверхности меньше десяти нанометров, на которую осаждались частицы исследуемого порошка.

Рентгенофазовый и количественный фазовый анализ порошка показал, что на тканевом фильтре улавливается гетерогенная смесь, состоящая из частиц нитрида титана TiN, плакированных никелем Ni, с небольшим примесным содержанием титан-никелевого нитрида Ti0,7Ni0,3N.

Первоначально смеси исследовались с помощью РЭМ для оценки размера крупных частиц и склонности к агломерации частиц нанометрового диапазона. Для растрового микроскопа порошки осаждались непосредственно после воздействия на них ультразвука на стандартные алюминиевые подложки.

Для туннельного микроскопа так же, как и для РЭМ, порошковая смесь взбалтывалась в ацетоне при помощи ультразвука, но осаждалась на подложку после временной паузы, во время которой крупные частицы успевают осесть на дно бюкса, в котором производится взбалтывание. Таким образом, достигается нанесение более тонкого слоя мелких частиц. Частицы смеси осаждались на подложку из ситалла, покрытую методом реактивного электродугового осаждения токопроводящим слоем TiN на установке ННВ-6,6-И1 (Борисов С.В., Шепатковский О.П., Григоров И.Г., Широкова А.Г. Методика подготовки непроводящих образцов сложной формы для проведения морфологических исследований методом туннельной микроскопии. // Сб. тезисов докладов Всероссийской научной конференции «Химия твердого тела и функциональные материалы. - 2008». Екатеринбург: УрО РАН, 2008. С.47).

На фиг.1 представлено изображение, полученное с помощью сканирующего туннельного микроскопа, фрагмента осажденных на подложку порошков из тканевого фильтра.

На фиг.2 представлен размер частиц нанопорошка по секущему профилю (прямая на фиг.1).

На изображении с СТМ (фиг.1) приведен фрагмент осажденных на подложку порошков из тканевого фильтра. Изображение хорошо иллюстрирует, что частицы порошка из тканевого фильтра имеют округлую вытянутую форму. По секущему профилю (прямая на фиг.1) следует, что размер частиц нанопорошка из тканевого фильтра (расстояние между вертикальными линиями, фиг.2) равен приблизительно 30 нм.

Следует отметить, что морфология частиц порошка после плазмохимической обработки интерметаллида NiTi, отличается от морфологии частиц порошка, полученного при совместной аналогичной обработке титана с никелем. В случае, когда прекурсором является порошок интерметаллида NiTi, частицы никеля в виде капель и монокристальные частицы TiN правильной кубической формы не наблюдаются, следовательно, процесс получения композиционного порошка завершен полностью, получен целевой продукт, состоящий из частиц, ядром которых является TiN, a оболочкой - Ni.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1

100 г интерметаллида NiTi производства ОАО "Полема" (г.Тула), предварительно измельченного в шаровой мельнице до частиц с крупностью не более 40 мкм, помещают в дозатор поршневого типа и пневмотоком подают в камеру реактора-испарителя лабораторной установки ПО "Нитрон" (г.Саратов), оборудованной плазмотроном. Порошок (150 г/ч) вводят навстречу потоку плазмы, скорость которого составляет 50 м/с. Температура азотной плазмы в камере реактора-испарителя составляет 4000°С. При обработке порошка никелида мощность составляет 2,5 кВт, расход плазмообразующего газа - 6 нм3/ч, суммарный расход газа - 25 нм3/ч. В качестве плазмообразующего и одновременно реакционного газа используют азот технический марки по ГОСТу 9293-74 (N2 - 99,95%, О2 - 0,05%). Полученный продукт в потоке азота поступает и охлаждается в водоохлаждаемой закалочной камере, расположенной в нижней части реактора-испарителя, после чего улавливается на поверхности тканевого фильтра.

По результатам рентгенофазового и количественного фазового анализов получен целевой продукт - порошок, состоящий из частиц нитрида титана стехиометрического состава, плакированных никелем, с небольшой примесью Ti0,7Ni0,3N. По данным сканирующей микроскопии частицы имеют сферическую форму со средним диаметром 27-30 нм.

Пример 2

100 г интерметаллида NiTi производства ОАО "Полема" (г.Тула), предварительно измельченного в шаровой мельнице до частиц с крупностью не более 40 мкм, помещают в дозатор поршневого типа и пневмотоком подают в камеру реактора-испарителя лабораторной установки ПО "Нитрон" (г.Саратов), оборудованной плазмотроном. Порошок (200 г/ч) вводят навстречу потоку плазмы, скорость которого составляет 55 м/с. Температура азотной плазмы в камере реактора-испарителя составляет 6000°С. При обработке порошка никелида мощность составляет 2,5 кВт, расход плазмообразующего газа - 6 нм3/ч, суммарный расход газа - 30 нм3/ч. В качестве плазмообразующего и одновременно реакционного газа используют азот технический марки по ГОСТу 9293-74 (N2 - 99,95%, О2 - 0,05%). Полученный продукт в потоке азота поступает и охлаждается в водоохлаждаемой закалочной камере, расположенной в нижней части реактора-испарителя, после чего улавливается на поверхности тканевого фильтра.

По результатам рентгенофазового и количественного фазового анализов получен целевой продукт - порошок, состоящий из частиц нитрида титана стехиометрического состава, плакированных никелем, с небольшой примесью титан-никелевого нитрида Ti0,7Ni0,3N. По данным сканирующей микроскопии частицы имеют сферическую форму со средним диаметром 27-30 нм.

Таким образом, предлагаемый способ позволяет получать композиционный нанопорошок, состоящий из частиц нитрида титана TiN с оболочкой из Ni и размерами, основная масса которых лежит за границей менее ста нанометров.

Способ получения нанопорошка нитрида титана, включающий подачу прекурсора в камеру испарителя-реактора, обработку в потоке азотной плазмы, последующее охлаждение в потоке азота и улавливание целевого продукта на поверхности фильтра, отличающийся тем, что в качестве прекурсора используют порошок никелида титана с размером частиц не более 40 мкм.



 

Похожие патенты:

Изобретение относится к получению углеродных наноматериалов методом химического осаждения из газовой среды. .
Изобретение относится к прецизионной металлургии износостойких сплавов для получения функциональных покрытий, работающих в экстремальных условиях эксплуатации. .
Изобретение относится к производству электроизоляционных полимерных материалов для переработки в изделия электротехнического назначения. .

Изобретение относится к нанотехнологии. .

Изобретение относится к области нанотехнологии и может быть использовано при изготовлении изделий, содержащих теплообменные поверхности с микро- и нанорельефом с целью интенсификации теплообмена, уменьшения гидравлического сопротивления и отложений.

Изобретение относится к способу синтеза наночастиц карбида вольфрама. .

Изобретение относится к области порошковой металлургии и может быть использовано для получения особо твердых и износостойких материалов, например, для элементов бронезащиты и индивидуальной защиты от стрелкового оружия и осколков боеприпасов.

Изобретение относится к нанотехнологиям, в частности к способу получения оптических структурированных хемосенсорных пленок на основе частиц кремнезема размером 5-8 нм с модифицированной поверхностью.

Изобретение относится к химии, наукам о материалах, нанотехнологиям, к технологии создания сверхрешеток нанокристаллов. .
Изобретение относится к способу получения иридия из тетракис(трифторфосфин)гидрида иридия и может быть использовано для получения порошка металлического иридия высокой чистоты.

Изобретение относится к области нанохимии, конкретно касается способа получения халькогенидов металлов в наноразмерном состоянии. .

Изобретение относится к порошковой металлургии и может быть использовано для получения порошка нестехиометрического гидрида титана с заданными содержанием водорода и удельной поверхностью.

Изобретение относится к гидрометаллургии редкоземельных металлов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. .

Изобретение относится к способам получения изделия из металлического сплава без плавления. .

Изобретение относится к порошковой металлургии, а именно к установке для пиролиза жидкого рабочего состава с получением порошка, в частности нитрида алюминия. .

Изобретение относится к получению порошков оксидных натрий-вольфрамовых бронз химическим способом. .
Изобретение относится к способам получения ферритовых порошков для применения в радиотехнике и радиоэлектронике в качестве радиопоглощающих покрытий. .

Изобретение относится к порошковой металлургии, к получению композиционных керамических порошков, содержащих нитрид кремния и нитрид титана. .

Изобретение относится к способам получения материала на основе платины, в частности пористого материала, и может быть использовано в производстве катализаторов, электродов, фильтров и других изделий, характеризующихся высокопористой структурой.

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении разрывных электроконтактов
Наверх