Система автоматического управления углом тангажа и ограничения угла атаки летательного аппарата

Изобретение относится к области систем автоматического управления (САУ) углом тангажа летательного аппарата (ЛА). Система автоматического управления углом тангажа и ограничения угла атаки ЛА содержит последовательно соединенные задатчик угла тангажа и вычислитель автопилота угла тангажа, сервопривод, выходной сигнал которого определяет угол отклонения руля высоты ЛА, датчик угла тангажа ЛА, последовательно соединенные задатчик максимального угла атаки, вычислитель автомата ограничения угла атаки и алгебраический селектор максимального сигнала, датчик угловой скорости ЛА. Выход датчика угла тангажа ЛА подключен к второму входу вычислителя автопилота угла тангажа. Выход алгебраического селектора максимального сигнала подключен к входу сервопривода. Выход датчика угловой скорости крена летательного аппарата подключен к второму входу вычислителя автомата ограничения угла атаки. Выход вычислителя автопилота угла тангажа подключен к второму входу алгебраического селектора максимального сигнала. Достигается обеспечение необходимой точности ограничения угла атаки и обеспечение плавных переходных процессов в САУ углом тангажа. 2 ил.

 

Изобретение относится к области систем автоматического управления (САУ) углом тангажа летательного аппарата (ЛА).

Известны САУ, обеспечивающие отработку заданного угла тангажа ЛА с помощью автопилота, воздействующего на угол отклонения руля высоты ЛА [1. Боднер В.А. Системы управления летательными аппаратами. - М.: Машиностроение, 1973. - 506 с. Стр.101, рис.3.9; 2. Красовский А.А. Системы автоматического управления полетом и их аналитическое конструирование. - М.: Наука, 1973. - 560 с. Стр.179, рис.5.2; 3. Михалев И.А., Окоемов Б.Н., Чикулаев М.С. Системы автоматического управления самолетом. - М.: Машиностроение, 1987. - с.240. Стр.192, рис.14.2, стр.194, рис.14.4, стр.198, рис.14.7, стр.201, рис.14.9].

Наиболее близкой по достигаемому техническому результату, выбранной в качестве прототипа, принимается САУ углом тангажа ЛА, реализующая астатический закон управления со скоростной обратной связью, содержащая последовательно соединенные задатчик угла тангажа и вычислитель автопилота угла тангажа, сервопривод, выходной сигнал которого определяет угол отклонения руля высоты летательного аппарата, датчик угла тангажа летательного аппарата, имеющий выход, подключенный к второму входу вычислителя автопилота угла тангажа [Боднер В.А. Системы управления летательными аппаратами. - М. Машиностроение, 1973. - 506 с. Стр.101, рис.3.9].

Эта САУ обеспечивает хорошие статические и динамические характеристики канала управления углом тангажа ЛА, но не позволяет ограничить значение угла атаки, что может привести к недопустимым аэродинамическим характеристикам ЛА и нарушению безопасности полета при маневрировании на больших углах атаки.

Как известно, одним из наиболее важных ограничений при полете ЛА является ограничение угла атаки. Диапазон эксплуатационных углов атаки заключен между предельными допустимыми углами атаки (αдоп.min и αдоп.max [Михалев И.А., Окоемов Б.Н., Чикулаев М.С. Системы автоматического управления самолетом. - М.: Машиностроение, 1987. - с.240. Стр.42, рис.4.1].

Задачей, на решение которой направлено заявляемое изобретение, является обеспечение необходимой точности ограничения угла атаки за счет включения в САУ углом тангажа ЛА автомата ограничения с помощью алгебраического селектора максимального сигнала.

Поставленная задача достигается тем, что в систему автоматического управления углом тангажа и ограничения угла атаки летательного аппарата, содержащую последовательно соединенные задатчик угла тангажа и вычислитель автопилота угла тангажа, сервопривод, выходной сигнал которого определяет угол отклонения руля высоты летательного аппарата, датчик угла тангажа летательного аппарата, имеющий выход, подключенный к второму входу вычислителя автопилота угла тангажа, в отличие от прототипа дополнительно введены последовательно соединенные задатчик максимального угла атаки, вычислитель автомата ограничения угла атаки и селектор минимального сигнала, выход которого подключен к входу сервопривода, датчик угловой скорости крена летательного аппарата, имеющий выход, подключенный к второму входу вычислителя автомата ограничения угла атаки, выход вычислителя автопилота угла тангажа подключен к второму входу селектора минимального сигнала.

Существо изобретения поясняется чертежами.

На фиг.1 представлена структурная схема заявляемой системы автоматического управления углом тангажа и ограничения угла атаки летательного аппарата.

На фиг.2 представлены результаты моделирования переходных процессов: 2а - графики переходных процессов в САУ углом тангажа ϑ без автомата ограничения угла атаки α, 2б - графики переходных процессов в САУ углом тангажа ϑ с автоматом ограничения угла атаки α.

Система автоматического управления углом тангажа и ограничения угла атаки летательного аппарата, содержащая последовательно соединенные задатчик угла тангажа 1 и вычислитель автопилота угла тангажа 2, сервопривод 3, выходной сигнал которого определяет угол отклонения руля высоты летательного аппарата 4, датчик угла тангажа 5 летательного аппарата 4, имеющий выход, подключенный к второму входу вычислителя автопилота угла тангажа 2, согласно изобретению содержит последовательно соединенные задатчик максимального угла атаки 6, вычислитель автомата ограничения угла атаки 7 и алгебраический селектор максимального сигнала 8, выход которого подключен к входу сервопривода 3, датчик угловой скорости крена 9 летательного аппарата 4, имеющий выход, подключенный к второму входу вычислителя автомата ограничения угла атаки 7, выход вычислителя автопилота угла тангажа 2 подключен к второму входу алгебраического селектора максимального сигнала 8.

Ограничение угла атаки в приведенной системе достигается за счет введения в ее структуру автомата ограничения угла атаки и алгебраического селектора максимального сигнала.

Система автоматического управления углом тангажа с вычислителем автомата ограничения угла атаки работает следующим образом.

Сигнал заданного угла тангажа ϑзад с выхода задатчика угла тангажа 1 поступает на первый вход вычислителя автопилота угла тангажа 2, на второй вход которого поступает сигнал текущего значения угла тангажа ϑ с выхода датчика угла тангажа 5. На выходе вычислителя автопилота угла крена 2 формируется сигнал

поступающий на один из входов алгебраического селектора максимального сигнала 8.

Сигнал заданного максимального угла атаки αогр с выхода задатчика максимального угла атаки 6 поступает на первый вход вычислителя автомата ограничения угла атаки 7, на второй вход которого поступает сигнал текущего значения угла атаки α с выхода датчика угла атаки 9. На выходе вычислителя автомата ограничения угла атаки 7 формируется сигнал

,

поступающий на другой из двух входов алгебраического селектора максимального сигнала 8.

Для построения САУ с ограничением параметров ЛА можно использовать логические устройства, реализующие алгоритмы алгебраического селектирования каналов. Обычно применяется принцип селектирования, согласно которому регулируется параметр многомерного объекта управления, наиболее приблизившийся к величине, определяемой программой управления [Интегральные системы автоматического управления силовыми установками самолетов. / Под ред. А.А.Шевякова. - М.: Машиностроение, 1983. - 283 с. Стр.110-111]. Такое селектирование реализуется с помощью алгебраических селекторов.

Для того чтобы регулируемые параметры не превысили максимально допустимых значений (ограничение сверху), селектор должен пропустить на управление сигнал, соответствующий получению минимальной величины управляющего сигнала. Такое селектирование называют селектированием по минимуму, а селектор - селектором минимальных сигналов управления.

Если же ограничивают минимальные значения параметров (ограничение снизу), то предпочтение отдается регулятору параметра, для поддержания которого требуется наибольший управляющий сигнал, т.е. осуществляется селектирование по максимуму. В этом случае используют селектор максимальных сигналов управления.

Такая классификация алгебраических селекторов справедлива, если коэффициент передачи объекта управления больше нуля. Если коэффициент передачи объекта управления меньше нуля, логика алгебраического селектора должна быть противоположной. Как известно, в уравнения и передаточные функции ЛА по углу тангажа и углу атаки входит знак минус при изменении угла отклонения руля высоты δв [1. Боднер В.А. Системы управления летательными аппаратами. - М. Машиностроение, 1973. - 506 с. Стр.28; 2. Красовский А.А. Системы автоматического управления полетом и их аналитическое конструирование. - М.: Наука, 1973 г. - 560 с. Стр.37]. Поэтому в рассматриваемой системе должен использоваться алгебраический селектор максимального сигнала 9.

Относительно разности входных сигналов ε=U1-U2 выражение, описывающее работу алгебраического селектора двух величин, преобразуется с использованием операции выделения модуля следующим образом:

где µ=1 для селектора максимального сигнала; µ=-1 для селектора минимального сигнала.

Селекторы вводятся в САУ для плавного переключения каналов управления и обеспечивают во всех условиях работы управляющее воздействие только одного из нескольких каналов управления, включаемых в работу в зависимости от режима работы объекта управления. При этом каждый из каналов управления работает автономно и его параметры обычно выбираются без учета взаимодействия с другими каналами. Это позволяет сохранить статическую точность и запасы устойчивости, свойственные отдельным каналам управления.

Следовательно, алгебраический селектор обеспечивает плавное переключение с одного канала на другой, например с автопилота на автомат ограничения и обратно на автопилот.

Выходной сигнал U алгебраического селектора максимального сигнала 8 поступает на вход астатического сервопривода 3 с передаточной функцией

,

изменяющего угол отклонения руля высоты δв летательного аппарата 4:

.

Приведем синтез системы автоматического управления углом тангажа и ограничения угла атаки летательного аппарата.

Аналитический синтез передаточных чисел автопилота и автомата ограничения с учетом заданного качества САУ удобно производить с помощью метода стандартных переходных характеристик [Петунин В.И. Синтез законов управления канала тангажа автопилота. // Вестник УГАТУ, серия «Управление, вычислительная техника и информатика». 2007. Том 9, №2 (20). С.25-31]. При этом должно выполняться равенство передаточных функций исходной Ф(р) и желаемой систем Ф*(р):

.

Передаточная функция самолета по углу тангажа ϑ при управлении рулем высоты δв [Боднер В.А. Системы управления летательными аппаратами. - М.: Машиностроение, 1973. - 506 с. Стр.28]:

.

Закон управления астатического автопилота угла тангажа со скоростной обратной связью:

где kϑ, , , - передаточные числа автопилота.

Синтез астатического автопилота угла тангажа со скоростной обратной связью подробно рассмотрен в работе [Петунин В.И. Синтез законов управления канала тангажа автопилота. // Вестник УГАТУ, серия «Управление, вычислительная техника и информатика». 2007. Том 9, №2 (20). С.25-31].

Передаточная функция самолета по углу атаки α при управлении рулем высоты δв [Боднер В.А. Системы управления летательными аппаратами. - М.: Машиностроение, 1973. - 506 с. Стр.28]:

.

Закон управления автомата ограничения угла атаки:

,

где kα; k; k - передаточные числа автомата ограничения.

Передаточная функция замкнутой системы по углу атаки:

Желаемая передаточная функция замкнутой системы по углу атаки:

.

Тогда передаточные числа автомата ограничения:

.

Результаты синтеза подтверждаются результатами моделирования переходных процессов в заявляемой системе автоматического управления углом тангажа и ограничения угла атаки летательного аппарата, представленными на фиг.2, где задающие воздействия каналов: ϑзад=1; αогр=0,2. Переходные процессы 2а, полученные в САУ углом крена без автомата ограничения угловой скорости тангажа, являются не удовлетворительными, так как имеют заброс по углу атаки. Переходные процессы 2б, полученные в САУ углом тангажа с автоматом ограничения угла атаки, являются удовлетворительными, поскольку показывают необходимую точность ограничения α≤αогр=0,2 и хорошее качество управления на режимах переключения каналов системы.

Итак, заявляемое изобретение позволяет, благодаря введению в структуру САУ углом тангажа ЛА автомата ограничения угла атаки с помощью алгебраического селектора максимального сигнала, обеспечить необходимую точность ограничения угла атаки и плавные переходные процессы при переключении каналов.

Система автоматического управления углом тангажа и ограничения угла атаки летательного аппарата, содержащая последовательно соединенные задатчик угла тангажа и вычислитель автопилота угла тангажа, сервопривод, выходной сигнал которого определяет угол отклонения руля высоты летательного аппарата, датчик угла тангажа летательного аппарата, имеющий выход, подключенный к второму входу вычислителя автопилота угла тангажа, отличающаяся тем, что дополнительно содержит последовательно соединенные задатчик максимального угла атаки, вычислитель автомата ограничения угла атаки и алгебраический селектор максимального сигнала, выход которого подключен к входу сервопривода, датчик угловой скорости крена летательного аппарата, имеющий выход, подключенный к второму входу вычислителя автомата ограничения угла атаки, выход вычислителя автопилота угла тангажа подключен к второму входу алгебраического селектора максимального сигнала.



 

Похожие патенты:

Изобретение относится к системам автоматического управления углом крена летательного аппарата. .

Изобретение относится к способу пилотирования летательного аппарата в фазе приземления на посадочную полосу. .

Изобретение относится к авиационному бортовому оборудованию и предназначено для установки на гражданские летательные аппараты. .

Изобретение относится к способам автоматического управления полетом самолета. .

Изобретение относится к системам автоматического управления полетом высокоманевренного самолета, использующего в продольном канале статический автомат продольного управления.

Автопилот // 2374131
Изобретение относится к авиационным управляемым ракетам с дифференциальным управлением рулями. .

Изобретение относится к способам автоматического управления полетом высокоманевренного самолета, использующего в продольном канале статический автомат продольного управления.

Изобретение относится к способам автоматического управления полетом высокоманевренного самолета. .

Изобретение относится к технике автоматического управления пространственным маневрированием самолета, в частности к системам управления самолетом, предусматривающим при отказе информационной системы переключение с основного контура управления на резервный контур управления.

Изобретение относится к области автоматического управления пространственным маневрированием самолета. .

Изобретение относится к бортовым системам автоматического управления летательными аппаратами (ЛА)

Изобретение относится к технике управления полетом беспилотного летательного аппарата в условиях появления не предсказуемых факторов возмущения полетом, способных привести к изменению траектории и, как следствие, к промахам в поражении цели

Изобретение относится к области авиации, в частности к устройствам обеспечения безопасности и предупреждения летных происшествий одновинтовых вертолетов на стартовых и взлетно-посадочных режимах. Система состоит из каналов: измерения; формирования эксплуатационных ограничений; индикации; сигнализации. Канал измерения включает аэрометрический канал определения величины, направления и составляющих вектора скорости ветра, спутниковый канал позиционирования и канал определения пространственного углового положения вертолета. Канал формирования эксплуатационных ограничений включает каналы определения допустимых значений углов крена и тангажа, скорости и направления ветра, продольной и боковой составляющих вектора скорости ветра на стоянке, на стартовых и взлетно-посадочных режимах, а каналы индикации и сигнализации включают соответственно каналы отображения текущих и допустимых значений критических параметров эксплуатационных ограничений на стартовых и взлетно-посадочных режимах. Повышается уровень безопасности на стоянке, при рулении и маневрировании по земной поверхности, на взлете и на посадке, на режимах снижения и висения. 1 ил.

Изобретение относится к системам автоматического управления (САУ) летательными аппаратами. Система состоит из последовательно соединенных: задатчика угла курса, первого элемента сравнения, вычислителя заданного угла крена, второго элемента сравнения, последовательно соединенных: вычислителя автопилота угла крена, сервопривода элеронов. Датчик угла курса летательного аппарата имеет выход, подключенный ко второму входу первого элемента сравнения, датчик угла крена летательного аппарата имеет выход, подключенный ко второму входу второго элемента сравнения и ко второму входу вычислителя автопилота угла крена. Система содержит последовательно соединенные: задатчик максимальной перегрузки, третий элемент сравнения, вычислитель автомата ограничения перегрузки и алгебраический селектор минимального сигнала, выход которого подключен ко входу вычислителя автопилота угла крена, выход второго элемента сравнения подключен ко второму входу алгебраического селектора минимального сигнала, выход датчика угла крена подключен ко второму входу вычислителя автомата ограничения перегрузки, датчик нормальной перегрузки летательного аппарата имеет выход, подключенный ко второму входу третьего элемента сравнения. Повышается точность ограничения нормальной перегрузки и плавность переходных процессов в САУ. 2 ил.

Изобретение относится к области систем управления летательными аппаратами и обеспечивает заход самолета на посадку в аварийных ситуациях, связанных с отказом как штатных бортовых автоматических радиокомпасов (АРК), так и наземных средств привода самолетов дальних приводных радиомаяков (ДПРМ) в точку начала снижения (ТНС). Способ захода самолета на посадку состоит в том, что для вывода самолета в ТНС используются станция предупреждения о радиолокационном облучении (СПО) самолета и два источника радиоизлучения (ИРИ), работающие на разнесенных частотах, перекрываемых частотным диапазоном СПО и размещаемых на ДПРМ и ближних приводных радиомаяках (БПРМ) для обозначения продольной оси взлетно-посадочной полосы (ВПП). Причем частоты ИРИ заранее заносятся в банк данных СПО самолета и их разнос должен составлять 500-1000 МГц. В зависимости от взаимного положения самолета и двух наземных ИРИ возможны три варианта реализации способа захода на посадку. Предлагаемые способы захода самолета на посадку обеспечивают вывод самолета в точку начала снижения при отказах его бортовых средств радиосвязи и автоматических радиокомпасов или выходе из строя штатного радиотехнического оборудования аэродромов и могут использоваться как резервный способ захода на посадку самолетов, оснащенных СПО. Повышается безопасность полетов. 3 н.п. ф-лы, 3 ил.

Изобретение относится к области авиации, в частности к системам автоматического управления полетом. Устройство (10) автоматического пилотирования летательного аппарата (1) с несущим винтом, содержащего, по меньшей мере, один толкающий винт (2), при этом упомянутый несущий винт содержит, по меньшей мере, один винт (3), оборудованный множеством лопастей (3'), содержит блок (15) обработки, взаимодействующий, по меньшей мере, с общей цепью (7) управления общим шагом упомянутых лопастей (3'). Устройство (10) содержит средство (20) запуска режима автоматизированного пилотирования с выдерживанием угла атаки, соединенное с блоком (15) обработки. Блок (15) обработки автоматически управляет общим шагом лопастей (3'), когда режим автоматизированного пилотирования с выдерживанием угла атаки включен, контролируя упомянутую общую цепь управления для поддержания аэродинамического угла атаки (α) летательного аппарата в значении опорного угла атаки (α*). Достигается снижение до минимума аэродинамического лобового сопротивления летательного аппарата. 3 н. и 16 з.п. ф-лы, 5 ил.

Система автоматического управления самолетом при снижении содержит навигационно-измерительный комплекс, первый и второй масштабные блоки, четыре сумматора, два нелинейных блока, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), руль высоты, рулевой привод. Входы первого нелинейного блока и входы второго и четвертого сумматоров подключены к выходам навигационно-измерительного комплекса. Выход первого нелинейного блока подключен к входам первого масштабного блока, второго нелинейного блока и ко входу третьего сумматора. К третьему сумматору подключены также интегратор, второй сумматор, первый блок перемножения сигналов. К первому блоку перемножения сигналов подключен второй нелинейный блок и четвертый сумматор, выход которого соединен с входом второго масштабного блока. Вход интегратора соединен с выходом второго сумматора. Выход первого сумматора соединен со входом АПУ. Исключается параллельный снос самолета с заданной траектории снижения. 3 ил.

Изобретение относится к области авиации, в частности к способам управления летательными аппаратами. Способ управления летательным аппаратом (1) с вращающейся несущей поверхностью с высокой скоростью движения, содержащим фюзеляж (2), по меньшей мере, один несущий винт (3), по меньшей мере, один тяговый винт (4) изменяемого шага, по меньшей мере, два полукрыла (11, 11'), расположенные с одной и другой стороны фюзеляжа (2), по меньшей мере, одно горизонтальное оперение (20), оборудованное подвижной поверхностью (21, 21'), и, по меньшей мере, одну силовую установку (2), приводящую во вращение упомянутый несущий винт (3) и каждый тяговый винт (4), включает определение общей подъемной силы летательного аппарата, регулирование подъемной силы каждого полукрыла (11, 11'), воздействуя на привод закрылков (12) таким образом, чтобы подъемная сила полукрыльев была равна первой заранее определенной процентной части общей подъемной силы. При этом разность подъемной силы между полукрыльями (11,11') позволяет компенсировать влияние несущего винта (3) на полукрылья (11, 11'). Достигается возможность автоматического поддержания положения гибридного вертолета при устойчивой фазе полета. 2 н. и 16 з.п. ф-лы, 6 ил.

Система автоматического управления углом тангажа и ограничения предельных значений параметров летательного аппарата содержит задатчик угла тангажа, вычислитель автопилота угла тангажа, алгебраический селектор, сервопривод руля высоты, датчик угла тангажа, задатчик максимального угла атаки, вычислитель автомата ограничения угла атаки, датчик угла атаки, задатчик максимальной нормальной перегрузки, вычислитель автомата ограничения нормальной перегрузки, датчик нормальной перегрузки. Обеспечиваются точность ограничения предельных значений параметров летательного аппарата и плавные переходные процессы при переключении каналов управления. 2 ил.

Группа изобретений относится к способу и системе грубого управления пространственным движением самолета. Для управления пространственным движением самолета формируют сигналы задания по углу крена и рысканья, измеряют углы крена, рысканья и тангажа, формируют сигналы управления по углу крена и рысканья, при этом формируют сигналы разности между эталонными сигналами крена и рысканья и измеренными сигналами по углу крена и рысканья соответственно, полученные сигналы разности отдельно интегрируют, дифференцируют, масштабируют и суммируют первый сигнал разности с сигналом управления по углу крена, второй сигнал разности с сигналом управления по углу тангажа. Система грубого управления содержит задатчики угла крена и рысканья, два регулятора, два исполнительных устройства, датчики углов крена, рысканья и тангажа, две эталонные модели, шесть усилителей, четыре сумматора, два дифференциатора, два интегратора, соединенные определенным образом. Обеспечивается устойчивость движения при нестационарных параметрах полета и действии адаптивных помех. 2 н.п. ф-лы, 1 ил.
Наверх