Способ управления регенерацией очистительной системы и устройство для его осуществления

Изобретение относится к двигателям внутреннего сгорания, в частности дизельным. Сущность изобретения: способ управления регенерацией очистительной системы основан на введении топлива в выхлопные газы путем впрысков с запаздыванием в некоторые камеры сгорания двигателя и/или путем прямых впрысков в выхлопной коллектор на входе в фильтр в зависимости от температуры на входе системы. Согласно изобретению количество (Qred) вводимого топлива для прямых впрысков в выхлопной коллектор и/или для впрысков с запаздыванием в некоторые камеры сгорания назначают в зависимости от температуры стенки (Tparoi) выхлопного коллектора. Техническим результатом изобретения является повышенная эффективность регенерации фильтр-уловителя частиц за счет применения впрыска восстановителей в выхлопной коллектор. 2 н. и 23 з.п. ф-лы, 5 ил.

 

Изобретение относится к двигателям внутреннего сгорания, в частности дизельным, поскольку они выбрасывают в атмосферу частицы. Более конкретно, изобретение касается управления фильтрами-улавливателями частиц или FAP.

Изобретение может быть использовано, в частности, в любом транспортном средстве, оборудованном фильтром-улавливателем частиц, а также при использовании дополнительного инжектора, предназначенного для продувки ловушки для оксида азота (NOxTrap) или для ее десульфатации.

В отличие от обычного традиционного катализатора окисления эти системы работают циклично или в режиме чередования, то есть при нормальной работе они захватывают загрязнители для их обработки только во время фаз регенерации. В целях регенерации эти фильтры или ловушки требуют наличия специального режима сгорания, чтобы обеспечить необходимые уровни температуры и обогащения.

Для регенерации фильтра-улавливателя частиц можно произвести один или несколько впрысков с запаздыванием в камеры сгорания двигателя после верхней мертвой точки (ВМТ) во время такта расширения, и в результате этих впрысков повышается температура выпускных газов. Дизельное топливо, впрыскиваемое с большим запаздыванием после ВМТ, сгорает не в камере сгорания, а в каталитической части выхлопного коллектора. Чтобы снизить выброс загрязняющих веществ, можно кроме фильтра-улавливателя частиц размещать либо катализатор окисления (DOC) в выхлопном коллекторе на входе фильтра-улавливателя частиц, либо непосредственно каталитический материал (такой как платина) внутри фильтра-улавливателя частиц. Именно в этих каталитических центрах окисляются НС и СО топлива, впрыскиваемого с запаздыванием, повышая температуру газов.

Наконец, путем увеличения расхода топлива, впрыскиваемого с запаздыванием, увеличивают выход НС и СО на выходе двигателя. Эти реагенты-восстановители реагируют в катализаторе окисления с кислородом, присутствующим в выхлопных газах, за счет чего получают тепло, повышающее температуру выхлопных газов на входе фильтра-улавливателя частиц.

Таким образом, для регенерации фильтра-улавливателя частиц можно использовать тепло, выделяемое катализатором окисления, который, как правило, размещают на входе фильтра-улавливателя частиц, и тепло каталитической фазы, нанесенной на каталитический фильтр-улавливатель частиц. Эта фаза выполняет функцию окисления углеводородов и моноксидов углерода, не обработанных катализатором окисления. Она может также использовать тепло, производимое окислительной фазой каталитического фильтра-улавливателя частиц, если на его входе нет катализатора окисления.

Приведение в действие различных средств, обеспечивающих регенерацию, обычно управляется вычислительным устройством управления двигателем, которое в зависимости от нескольких параметров, в том числе степени забивания сажей фильтра-улавливателя частиц, определяет момент регенерации, а также ее продолжительность и параметры впрыска во время этой фазы.

Однако для повышения эффективности регенерации необходимо получать температуру внутри фильтра, способствующую окислению сажи (570-650°С), превышающую нормальную температуру выхлопных газов, причем независимо от рабочего такта двигателя. Точно также, чтобы оптимизировать обработку всех загрязнителей, необходимо соответствующим образом управлять фазами накопления и регенерации в этих ловушках. Таким образом, эти операции требуют регулирования температуры на входе фильтра-улавливателя частиц в момент фаз регенерации и разбавления, связанного с пост-впрыском.

В настоящее время тепло, необходимое для регенерации элементов-накопителей частиц, получают при помощи дополнительных впрысков либо во время такта расширения в цилиндре, либо непосредственно в выхлопном коллекторе. Как правило, регулирование впрыска осуществляют путем замыкания цикла по температуре на выходе катализатора окисления TSDOC при помощи пропорционально-интегрально-дифференциального регулятора (ПИД-регулятора), который вводит вычисленную поправку для регулирования этой температуры.

Два активатора, которыми располагают для достижения экзотермического пика, ожидаемого в каталитической фазе выхлопного коллектора, не являются равнозначными с точки зрения критерия разбавления топлива смазочным маслом.

Использование пост-впрыска в цилиндр приводит к повышенному расходу разбавителя, тогда как применение прямого впрыска в выхлопной коллектор может облегчить реализацию системы с этой точки зрения.

Задачей настоящего изобретения является максимальное повышение эффективности регенерации фильтра-улавливателя частиц за счет применения впрыска восстановителей в выхлопной коллектор, более предпочтительного, чем пост-впрыск, чтобы снизить стоимость разбавления, связанного с использованием пост-впрыска.

Для решения этой задачи используют подаваемое топливо для прямых впрысков в выхлопной коллектор и/или для впрысков с запаздыванием в камеры сгорания, в зависимости от значения температуры стенки.

Предпочтительно впрыск топлива в выхлопной коллектор ограничен зонами наименьших и наибольших нагрузок двигателя, и расход топлива, впрыскиваемого в выхлопной коллектор, ограничен максимальным расходом, сверх которого впрыскиваемое топливо не будет полностью окисляться в этом коллекторе.

Объектом изобретения является также устройство, содержащее первый температурный датчик на входе турбины, катализатор окисления, второй температурный датчик, измеряющий температуру на входе очистительной системы, очистительную систему и средство определения температуры стенки выхлопного коллектора.

Другие особенности и преимущества изобретения будут более понятны из нижеследующего описания неограничивающего варианта его осуществления со ссылками на прилагаемые чертежи.

На фиг.1 показан пример осуществления изобретения;

на фиг.2 показано распределение впрысков в зависимости от условий такта выпуска;

на фиг.3 представлен способ определения температуры стенки;

на фиг.4 показана блок-схема управления;

на фиг.5 показаны кривые насыщения количества топлива, впрыскиваемого в выхлопной коллектор (пятый инжектор), для трех значений температуры стенки.

На фиг.1 показан неограничивающий пример использования изобретения в двигателе транспортного средства. На фигуре показаны четырехцилиндровый двигатель 1, турбина 2 и компрессор 3 турбокомпрессора, а также система дожигания выхлопных газов (EGR) и ее охлаждающий контур 4. В выхлопном коллекторе находится катализатор 7 окисления (DOC), за ним следует фильтр-улавливатель частиц 8 (FAP). Инжектор 9 для впрыска топлива в выхлопной коллектор, называемый пятым инжектором, установлен на входе в катализатор 7. Среди различных датчиков следует указать датчик 11 температуры (Tavt) перед турбиной, датчик 13 температуры (Tefap) на входе в фильтр-улавливатель частиц, датчик 14 температуры (Tesfap) на выходе из фильтра-улавливателя частиц, кислородный датчик 16 и датчик 17 разности давлений или датчик относительного давления между входом в фильтр и атмосферой. Наконец, на схеме показаны дроссельная заслонка 18 двигателя, клапан 19 EGR и средства 21 изоляции выхлопного коллектора. Соответствующее вычислительное устройство 22 двигателя принимает и обрабатывает сигналы, поступающие от упомянутых датчиков, а также другие данные, поступающие от потребителей 23 электрического тока, от автоматического вентилятора 25, управляемого термостата 26 и от датчиков 27 и 28 атмосферной температуры и атмосферного давления соответственно.

Вместе с тем в рамках настоящего изобретения дополнительный инжектор, расположенный в выхлопном коллекторе, или пятый инжектор 9 можно разместить либо на входе, либо на выходе из турбины, что не имеет значения для способа в соответствии с настоящим изобретением. Таким образом, устройство в соответствии с настоящим изобретением содержит следующие элементы: инжектор 9 на выхлопном коллекторе, первый температурный датчик 11 на входе в турбину, катализатор 7 окисления, второй температурный датчик 12, измеряющий температуру (Tefap) на входе очистительной системы, очистительную систему 8 и средство определения температуры Tparoi стенки выхлопного коллектора. Согласно изобретению средство измерения температуры стенки может быть моделью вычисления, введенной в вычислительное устройство, или датчиком температуры стенки (не показан). Наконец, очистительная система 8 может быть либо фильтром-улавливателем частиц, либо другой системой, например ловушкой для оксидов азота, а инжектор 9 на выхлопном коллекторе может быть установлен на входе или на выходе из турбины.

Как было указано выше, настоящим изобретением предусмотрено назначение количества топлива Qrec, позволяющее получить необходимую температуру на входе в фильтр-улавливатель частиц, между дополнительным инжектором, установленным в канале выпуска отработавших газов, и пост-впрыском.

В частности, количество Qred, управляемое согласно стратегии контроля температуры на входе фильтра-улавливателя частиц, будет связано в первую очередь с дополнительным инжектором Q5inj и/или с пост-впрыском Qpoi, в зависимости от значения температуры Tparoi стенки выхлопного коллектора в данный момент времени.

Изобретение исходит из того, что выхлопной инжектор не может быть использован во всем диапазоне рабочих режимов двигателя. Действительно, зона, характеризующаяся низким выходом выхлопных газов и низкой температурой стенки, не обеспечивает достаточного испарения впрыскиваемого топлива. Из соображений безопасности предпочтительно также не использовать выхлопной инжектор в зонах, характеризующихся большим выходом выхлопных газов и высокой температурой стенки, в силу незначительного времени нахождения восстановителей в катализаторе окисления, чтобы обеспечить окисление всего количества восстановителей. Как показано на фиг.2, впрыск топлива в выхлопной коллектор применяют только в некоторых диапазонах работы двигателя, и он ограничен, например, зонами наименьших и наибольших нагрузок двигателя.

Температуру стенки можно определять либо при помощи датчика, либо при помощи введенной в вычислительное устройство двигателя модели в зависимости от различных параметров. Действительно, чтобы определить температуру стенки Tparoi, можно использовать датчик или вычислительную модель, введенную, например, в вычислительное устройство управления двигателем, которая позволяет получить значение Tparoi в данный момент времени. Эта температура зависит от различных параметров, указанных на фиг.3, в том числе от температуры Tavt выхлопных газов перед турбиной турбокомпрессора, от температуры Teau воды двигателя, от расхода выхлопных газов Qech и от расхода воздуха Qaur (измеряемого, например, на такте впуска). Модель может использовать все эти параметры или только некоторые из них, в зависимости от фазы работы двигателя.

Количество впрыскиваемого топлива Qred зависит от температуры стенки, от температуры на выходе катализатора окисления DOC или от температуры Tefap на входе фильтра-улавливателя частиц и от рабочей точки двигателя (выход выхлопных газов). Количество топлива Qred вычисляют при помощи модуля, интегрированного в вычислительное устройство управления двигателем. Этот модуль, показанный на фиг.4, включает в себя базовое регулирование расхода впрыскиваемого восстановителя (предположительно не зависящего от активатора), отмечаемое на картографии рабочей точкой режим/крутящий момент двигателя, и поправку, генерируемую корректором типа ПИД (пропорционально-интегрально-дифференциальный) и зависящую от разности между измерением температуры на входе фильтра-улавливателя частиц и заданной температурой Tcons. Конверсионная способность катализатора окисления DOC, которая зависит от температуры стенки и от расхода проходящих через нее газов, определяет максимальный расход для пятого инжектора, сверх которого часть восстановителей, впрыскиваемых в выхлопной коллектор, не будет окисляться. Чтобы учитывать это условие, предусмотрено, чтобы количество Q5inj впрыскиваемого в выхлопной коллектор топлива было ограничено максимальным количеством Qinjmax, сверх которого впрыскиваемое топливо не будет полностью окислено в этом коллекторе. В частности, топливо впрыскивают в выхлопной коллектор, пока количество Qinj впрыскиваемого топлива остается меньше максимального количества топлива Qinjmax, способного окислиться в этом коллекторе.

На фиг.5 показан принцип высокого насыщения расхода пятого инжектора для разных температур стенки Tparoi1, Tparoi2, Tparoi3. В двух зонах, где не может быть использован этот инжектор, можно применять пост-впрыск, если стратегия контроля температуры на входе фильтра-улавливателя частиц требует получения экзотермического пика в DOC.

Если допустимо использование пятого инжектора, его насыщают в первую очередь, чтобы обеспечить его использование до насыщения, перенося при этом избыток на поствпрыск:

- если Qred<Q5inj максимального, то Q5inj=Qred и Qpoi1=0;

- если Qred>=Q5inj максимальному, то Q5inj=Q5inj максимальному и Qpoi1=Qred-Q5inj максимальный.

Таким образом, избыток топлива Qpoi по отношению к количеству окисляемого топлива в выхлопном коллекторе Qinjmax вводят путем впрысков с запаздыванием в камеры сгорания двигателя. Предпочтительно вычислительное устройство 22 двигателя управляет количеством топлива Qred в инжекторе, предназначенном для выхлопного коллектора 9, до уровня насыщения катализатора 7 окисления, прежде чем перенести избыток, требуемый для регенерации фильтра 8, на впрыски топлива с запаздыванием в камеры сгорания двигателя.

В случае одновременной активации впрыска в выхлопной коллектор и поствпрыска предпочтительно, чтобы подача всего впрыскиваемого топлива следовала наклонному графику роста для достижения заданного значения, чтобы избежать прохождения части впрыскиваемого топлива через катализатор без вступления в реакцию. При таком профиле впрыска восстановители, проходящие через катализатор, имеют больше шансов окислиться в случае большого выхода выхлопных газов и высокой температуры стенки.

Чтобы улучшить динамику системы, предпочтительно менять расход инжектора на выхлопном коллекторе в ответ на изменение общего заданного значения расхода. Таким образом, пост-впрыск становится нечувствительным к изменению заданного значения. Вместе с тем, поскольку приоритетной задачей является максимальное уменьшение разбавления, связанного с пост-впрыском, изобретение предусматривает восстановление равновесия (то есть получение максимального расхода восстановителей в выхлопном коллекторе и минимального расхода в камерах сгорания двигателя) путем постепенного повышения расходов восстановителей в выхлопном коллекторе.

Модель стратегии впрыска восстановителей в выхлопной коллектор введена в электронный блок управления ECU транспортного средства. Эта стратегия предусматривает следующие этапы:

- сначала на основе картографии модель определяет дополнительное количество впрыскиваемого топлива (Qred) для рассматриваемой рабочей точки;

- измерение температуры на выходе катализатора окисления DOC (или на входе фильтра-улавливателя частиц FAP) позволяет скорректировать это количество восстановителя, чтобы максимально приблизиться к искомой температуре (заданной температуре) на входе фильтра-улавливателя частиц FAP (TSDOC=TEFAP);

- после этого блок управления управляет распределением дополнительного топлива между пятым инжектором (Q5inj) и пост-впрыском (Qpoi1) в зависимости от характеристик выхлопных газов (Tparoi и QECH). При этом может работать или только пятый инжектор, или только впрыск с запаздыванием.

Наконец, следует отметить, что уточнение модели вычисления температуры стенки может ограничить применение способа в соответствии с настоящим изобретением. Действительно, необходимо иметь возможность использования дополнительного инжектора в максимально большом диапазоне режима нагрузки, но вместе с тем важно не использовать его, когда температура стенки является слишком низкой. Пределы, принимаемые для значения Tparoi, будут непосредственно влиять на допустимое поле режим/нагрузка.

1. Способ управления регенерацией очистительной системы, содержащей катализатор окисления и фильтр (8), включающий введение топлива в выхлопные газы путем впрысков с запаздыванием в некоторые камеры сгорания двигателя и/или путем прямых впрысков в выхлопной коллектор на входе фильтра посредством инжектора (9), предназначенного для выхлопного коллектора, в зависимости от температуры на входе системы, отличающийся тем, что количество (Qred) вводимого топлива для прямых впрысков в выхлопной коллектор и/или для впрысков с запаздыванием в некоторые камеры сгорания назначают в зависимости от температуры стенки (Tparoi) выхлопного коллектора.

2. Способ управления по п.1, отличающийся тем, что впрыск топлива в выхлопной коллектор осуществляют только в некоторых диапазонах работы двигателя.

3. Способ управления по п.1, отличающийся тем, что впрыск топлива в выхлопной коллектор ограничен зоной наименьших нагрузок и зоной наибольших нагрузок двигателя.

4. Способ управления по любому из пп.1-3, отличающийся тем, что температуру стенки определяют при помощи датчика.

5. Способ управления по любому из пп.1-3, отличающийся тем, что температуру стенки (Tparoi) определяют посредством модели, введенной в вычислительное устройство двигателя, в зависимости от параметров, содержащих температуру выхлопных газов перед турбиной турбокомпрессора (Tavt), температуру воды (Teau), расход выхлопных газов (Qech) и расход воздуха (Qair).

6. Способ управления по п.1, отличающийся тем, что количество топлива (Qinj), впрыскиваемого в выхлопной коллектор, ограничено максимальным количеством (Qinj max), сверх которого впрыскиваемое топливо не будет полностью окисляться катализатором окисления в этом коллекторе.

7. Способ управления по п.1, отличающийся тем, что топливо предпочтительно впрыскивают в выхлопной коллектор, пока количество (Qinj) впрыскиваемого топлива остается меньше максимального количества (Qinj max) топлива, полностью окисляемого в этом коллекторе.

8. Способ управления по п.7, отличающийся тем, что избыток топлива (Qpoi) по отношению к количеству окисляемого топлива (Qinj max) в выхлопном коллекторе вводят путем впрысков с запаздыванием в камеры сгорания двигателя.

9. Способ управления по п.1, отличающийся тем, что общее количество (Qred) топлива корректируют по каждой рабочей точке двигателя при помощи показателя, зависящего от разности между температурой (Tefap) на входе в фильтр и заданной (Tcons) температурой регенерации.

10. Способ управления по п.1, отличающийся тем, что вычислительное устройство (22) двигателя обеспечивает количество (Qred) топлива в инжекторе выхлопного коллектора (9) до уровня насыщения катализатора (7) окисления прежде, чем перенести избыток, требуемый для регенерации фильтра (8), на впрыски топлива с запаздыванием в камеры сгорания двигателя.

11. Способ управления по п.10, отличающийся тем, что расход выхлопного инжектора предпочтительно меняется в ответ на изменение общего заданного значения расхода.

12. Способ управления по п.1, отличающийся тем, что очистительная система (8) является фильтром-улавливателем частиц.

13. Устройство для осуществления способа по любому из пп.1-12, отличающееся тем, что содержит инжектор (9) на выхлопном коллекторе, первый температурный датчик (11) на входе в турбину турбокомпрессора, катализатор (7) окисления, второй температурный датчик (12), измеряющий температуру (Tefap) на входе очистительной системы, очистительную систему (8) и средство определения температуры (Tparoi) стенки выхлопного коллектора.

14. Устройство по п.13, отличающееся тем, что средством определения температуры стенки является вычислительная модель, введенная в вычислительное устройство (22).

15. Устройство по п.13, отличающееся тем, что топливный инжектор (9) расположен на входе в турбину турбокомпрессора (2).

16. Устройство по п.14, отличающееся тем, что топливный инжектор (9) расположен на входе в турбину турбокомпрессора (2).

17. Устройство по п.13, отличающееся тем, что топливный инжектор (9) расположен на выходе из турбины турбокомпрессора (2).

18. Устройство по п.14, отличающееся тем, что топливный инжектор (9) расположен на выходе из турбины турбокомпрессора (2).

19. Устройство по любому из пп.13-18, отличающееся тем, что первый температурный датчик (11) установлен на входе в турбину турбокомпрессора (2).

20. Устройство по любому из пп.13-18, отличающееся тем, что содержит четвертый температурный датчик (14) на выходе очистительной системы (Tsfap).

21. Устройство по п.19, отличающееся тем, что содержит четвертый температурный датчик (14) на выходе очистительной системы (Tsfap).

22. Устройство по любому из пп.13-18, отличающееся тем, что очистительная система (8) представляет собой фильтр-улавливатель частиц.

23. Устройство по п.19, отличающееся тем, что очистительная система (8) представляет собой фильтр-улавливатель частиц.

24. Устройство по любому из пп.13-18, отличающееся тем, что очистительная система (8) представляет собой ловушку для оксидов азота.

25. Устройство по п.19, отличающееся тем, что очистительная система (8) представляет собой ловушку для оксидов азота.



 

Похожие патенты:

Изобретение относится к выхлопной системе для двигателя внутреннего сгорания. .

Изобретение относится к регенерации компонентов системы выпуска отработавших газов двигателя внутреннего сгорания

Изобретение относится к способу регулирования температуры фильтра-улавливателя частиц. Сущность изобретения: способ регулирования температуры фильтра-улавливателя частиц выхлопной системы (1) во время фазы регенерации этого фильтра путем впрыска топлива в выхлопные газы, содержащий этапы, на которых измеряют температуру (Т5) на уровне фильтра-улавливателя частиц; определяют количество топлива (Qigec), необходимое для впрыска в выхлопные газы, при этом упомянутое количество содержит первую составляющую (Qc1c), определяемую при помощи разомкнутого контура автоматического регулирования, не учитывающего измеряемую температуру, и это количество содержит вторую составляющую (Qc2), определяемую при помощи замкнутого контура автоматического регулирования, учитывающего измеряемую температуру; и в зависимости от амплитуды второй составляющей относительно определяемого количества топлива определяют поправку (Кс) для первой составляющей и эту поправку вводят в разомкнутый контур автоматического регулирования. Техническим результатом изобретения является обеспечение быстрой и эффективной регенерации фильтра. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение может быть использовано в транспортных средствах (ТС) с двигателем (230) внутреннего сгорания (ДВС), выпускная система которых снабжена фильтром (261) частиц. Подачу топлива в выпускную систему осуществляют через форсунку (255). При этом определяют, было ли достигнуто заданное рабочее состояние ТС, в котором повышается риск накопления топлива в выпускной системе. Если заданное рабочее состояние ТС достигнуто, противодействуют накоплению топлива в выпускной системе. Фильтр (261) частиц снабжен датчиком (275) температуры. В выпускной системе размещен также датчик (245) массового расхода отработавших газов. Технический результат заключается в улучшении рабочих характеристик ТС. 4 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к восстановлению дизельного сажевого фильтра в системе дизельного двигателя. Сущность изобретения: способ восстановления дизельного сажевого фильтра в системе (1) дизельного двигателя, которая содержит камеру сгорания, образованную посредством возвратно-поступательного поршня внутри цилиндра, выпускной клапан для циклического открытия камеры сгорания относительно выпускной линии (40) и дизельный сажевый фильтр (7), расположенный в выпускной линии (40). Способ включает впрыскивание дозы топлива в камеру сгорания посредством двух последовательных импульсов (AIP1-AIP3) довпрыскивания, каждый из которых начинается (SOI) после того, как поршень прошел верхнюю мертвую точку (ВМТ), и достаточно близко к последней, для того чтобы топливо сгорало, по меньшей мере, частично внутри камеры сгорания. Техническим результатом изобретения является повышение эффективности восстановления дизельного сажевого фильтра при всех возможных рабочих условиях двигателя. 3 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к обработке отработавших газов дизельного двигателя. Сущность изобретения: дизельный двигатель с системой последующей обработки отработавших газов, содержащей контроллер, обеспечивающий управление работой двигателя для получения первой группы характеристик отработавших газов и управление топливным инжектором для впрыска топлива по потоку выше СФ с первым расходом впрыскиваемого топлива, пока не будет выполнено по меньшей мере одно условие, и после выполнения такого по меньшей мере одного условия управление топливным инжектором таким образом, чтобы уменьшался расход впрыскиваемого топлива, а также управление работой двигателя для получения второй группы характеристик отработавших газов, при которой будет происходить регенерация СФ. Причем по меньшей мере одна характеристика будет иметь разные значения в первой и второй группах характеристик. Также раскрыт способ обработки отработавших газов дизельного двигателя. Техническим результатом изобретения является повышение эффективности регенерации сажевого фильтра. 4 н. и 14 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в системах снижения токсичности отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Предложен способ калибровки по меньшей мере одной топливной форсунки для топливной горелки, установленной по потоку выше дизельного сажевого фильтра. Способ калибровки выполняют в режиме холостого хода ДВС для обеспечения постоянной температуры горелки в процессе калибровки. Работу указанной топливной форсунки осуществляют с использованием первой ширины импульсов. Затем фиксируют первую температуру ОГ ниже по потоку топливной горелки. После фиксации первой температуры первую ширину импульсов топливной форсунки изменяют до второй ширины импульсов, которая отличается от первой ширины импульсов, и фиксируют вторую температуру ОГ ниже по потоку топливной горелки. После чего определяют разницу между первой и второй температурами ОГ и при необходимости регулируют характеристику впрыска топливной форсунки. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к способу подачи тепловой энергии в устройство для нейтрализации отработавших газов. Способ подачи тепловой энергии в устройство для нейтрализации отработавших газов (2), размещенное в выпускном тракте двигателя внутреннего сгорания, в особенности дизельного двигателя, путем подогрева отработавших газов, набегающих на устройство для нейтрализации отработавших газов (2) до требуемой температуры. Отработавшие газы, выброшенные двигателем внутреннего сгорания, нагревают до требуемой температуры путем конверсии углеводородов, дозировано подаваемых в выпускной тракт, на двух окислительных нейтрализаторах (7, 10), размещенных по направлению потока отработавших газов один за другим. Ближайший по направлению потока отработавших газов двигателя внутреннего сгорания первый окислительный нейтрализатор (10) размещен во вспомогательном канале (4), а расположенный после него второй окислительный нейтрализатор (7) размещен в выпускном тракте за местом слияния основного и вспомогательного каналов выпуска отработавших газов (3 и 4). В зависимости от массы общего потока отработавших газов, выброшенного двигателем внутреннего сгорания, фактической температуры и требуемой температуры потока отработавших газов, набегающего на устройство для нейтрализации отработавших газов (2), с помощью управляющей величины, соответствующей текущим условиям или близкой к ним и полученной из параметрического поля управления, учитывающего характеристики потока отработавших газов и требуемое увеличение температуры, регулируют подачу углеводородов для впрыска их во вспомогательный канал (4) в поток отработавших газов перед первым окислительным нейтрализатором (10) и (или) в массовый поток отработавших газов, протекающий по вспомогательному каналу (4). Повторяющимся образом регистрируют фактическую температуру отработавших газов, набегающих на устройство для нейтрализации отработавших газов (2). При обнаружении разницы между фактической температурой и требуемой температурой изменяют параметры подачи углеводородов и (или) массового потока отработавших газов, протекающего сквозь вспомогательный канал (4), для достижения требуемой температуры, причем операции по мониторингу температуры повторяют до тех пор, пока требуемая температура не будет достигнута. Техническим результатом изобретения является обеспечение эффективной нейтрализации отработавших газов путем повышения температуры выхлопных газов, поступающих на устройство для нейтрализации. 14 з.п. ф-лы, 4 ил.

Изобретение относится к системам очистки отработавших газов двигателя внутреннего сгорания. Нагревательный модуль для системы нейтрализации отработавших газов, подсоединенной к двигателю внутреннего сгорания на стороне выпуска отработавших газов, содержит каталитическую горелку с форсункой для впрыска углеводородов (14). После форсунки (14) в направлении потока отработавших газов размещен окислительный нейтрализатор (12). Нагревательный модуль (1) располагает основным каналом отработавших газов (2), вспомогательным каналом (3), содержащим каталитическую горелку (12, 14), а также устройством (4, 5) для управления массовым потоком отработавших газов, протекающим через вспомогательный канал (3, 3.1). Согласно первому варианту исполнения основной канал (2, 2.1) на входе нагревательного модуля (1, 1.1) имеет перепускной отрезок трубопровода (6, 6.1, 6.2), оборудованный перепускными отверстиями (7, 7.1). В основном канале (2.1) размещена имеющая спиральную форму, по меньшей мере, на отдельных участках направляющая перегородка (16), благодаря которой потоку отработавших газов, протекающему по основному каналу (2.1), придается вращательное движение. Согласно другому исполнению предусмотрено, что вспомогательный канал 3 на стороне входа и на стороне выхода имеет, соответственно, отходящую от основного канала 2 в радиальном направлении отводящую камеру 8, и между этими отводящими камерами 8, располагаясь параллельно основному каналу 2 нагревательного модуля 1, находится отрезок вспомогательного канала 11 с окислительным нейтрализатором 12. При использовании изобретения конструкция нагревателя становится более компактной. 2 н. и 14 з.п. ф-лы, 8 ил.

Изобретение относится к системам обработки отработавших газов двигателей внутреннего сгорания. Способ управления работой форсунки, служащей для впрыска углеводородов в поток отработавших газов, включает: впрыск топлива для нагрева блоков системы. Если топливо не впрыскивается, то подают воздух для продувки и охлаждения сопла форсунки для предотвращения осаждения углерода, если температура отработавших газов низка. И по существу прекращают подачу воздуха для обеспечения возможности пассивного нагрева сопла форсунки отработавшими газами для окисления накопившегося углерода, если температура отработавших газов достаточно высока для обеспечения окисления. В предпочтительном варианте сопло форсунки имеет каталитическое покрытие для снижения температуры окисления материала нагара. Использование изобретения предотвратит закоксовывание форсунки. 4 з.п. ф-лы, 3 ил.

Изобретение может быть использовано в устройствах управления для двигателя внутреннего сгорания. Двигатель внутреннего сгорания содержит устройство контроля выхлопных газов, размещенное в канале выхлопных газов двигателя внутреннего сгорания, и устройство подачи топлива, выполненное с возможностью подачи топлива в устройство контроля выхлопных газов. Устройство контроля содержит электронный блок управления. Электронный блок управления выполнен с возможностью управления подачей топлива устройством подачи топлива для управления регенерацией таким образом, что при этом температура устройства контроля выхлопных газов повышается и твердые частицы, осажденные на устройстве контроля выхлопных газов, сгорают. Электронный блок управления обеспечивает повышение температуры устройства контроля выхлопных газов с первой скоростью повышения температуры для управления регенерацией, когда температура устройства контроля выхлопных газов находится в первом температурном диапазоне. Электронный блок управления обеспечивает повышение температуры устройства контроля выхлопных газов со второй скоростью повышения температуры в качестве управления регенерацией, когда температура устройства контроля выхлопных газов находится во втором температурном диапазоне. Вторая скорость повышения температуры ниже, чем первая скорость повышения температуры, а второй температурный диапазон выше, чем первый температурный диапазон. Электронный блок управления обеспечивает условия для сжигания твердых частиц путем поддержания температуры устройства контроля выхлопных газов в третьем температурном диапазоне в качестве управления регенерацией, когда температура устройства контроля выхлопных газов находится в третьем температурном диапазоне. Третий температурный диапазон выше, чем второй температурный диапазон. Электронный блок управления обеспечивает регулирование температуры устройства контроля выхлопных газов на холостом режиме работы так, чтобы она была равной или меньше, чем температура устройства контроля выхлопных газов в то время, когда двигатель внутреннего сгорания входит в состояние холостого режима работы для управления предотвращением повышения температуры, когда температура устройства контроля выхлопных газов во время управления регенерацией находится во втором температурном диапазоне и двигатель внутреннего сгорания находится в состоянии холостого режима работы. Технический результат заключается в предотвращении образования белого дыма при холостом режиме работы двигателя. 5 з.п. ф-лы, 10 ил.
Наверх