Флуоресцентно-меченый олигонуклеотидный зонд для идентификации возбудителей сапа и мелиоидоза b.pseudomallei и b.mallei

Изобретение относится к биотехнологии, молекулярной биологии. Описан олигонуклеотидный зонд с комплементарными концевыми последовательностями по типу «молекулярного маяка»: 5'-(FAM)-GCCTCGGTGAGTCGGCCCCTAAGGCGAGGC-(RTQ1)-3'. FAM - карбоксифлуоресцеин, флуоресцентный краситель, длина волны поглощения которого оставляет 492 нм, а длина волны флуоресценции - 520 нм. RTQ1 - гаситель флуоресценции с диапазоном гашения 470-570 нм. Изобретение позволяет идентифицировать возбудителей сапа и мелиоидоза в короткий срок с высокой чувствительностью и специфичностью в биологическом материале и объектах окружающей среды. Изобретение может быть использовано в медицине для выявления генетического материала возбудителей сапа и мелиоидоза Burkholderia mallei и Burkholderia pseudomallei в пробах как для диагностики в практическом здравоохранении и службе Роспотребнадзора, так и для научных исследований.

 

Изобретение относится к биотехнологии, молекулярной биологии и может быть использовано в медицине для выявления генетического материала возбудителей сапа и мелиоидоза В. pseudomallei и В. mallei в пробах как для диагностики в практическом здравоохранении и службе Роспотребнадзора, так и для научных исследований.

Возбудитель сапа (Burkholderia mallei) и возбудитель мелиоидоза (Burkholderia pseudomallei) - аэробные грамотрицательные неферментирующие бактерии, принадлежащие к роду Burkholderia. Мелиоидоз - эндемичное для Австралии и ряда стран Юго-Восточной Азии инфекционное заболевание людей и животных. Сап - особо опасная зоонозная инфекция.

Метод полимеразной цепной реакции является прямым методом выявления ДНК данных патогенных буркхольдерий. И обладает высокой специфичностью и чувствительностью. В основе метода ПЦР лежит природный процесс репликации ДНК - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы.

Процесс удвоения нуклеиновых кислот можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителей сапа и мелиоидоза.

Для эффективного проведения ПЦР необходимы праймеры - синтетические олигонуклеотиды определенного размера, специфические для каждого типа возбудителей. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними. В результате ПЦР происходит многократное увеличение числа копий (амплификация) специфического участка гена, катализируемое ферментом ДНК-полимеразой. Выбор специфического фрагмента и подбор праймеров играет важнейшую роль в специфичности проведения амплификации, что сказывается на качестве проведения анализа исследуемых микроорганизмов.

Использование специальных флуоресцентных меток позволяет отказаться от стадии электрофореза, что снижает риск перекрестной контаминации продуктами ПЦР и соответственно уменьшает число ложноположительных результатов. Поскольку регистрация результатов проводится непосредственно в процессе реакции амплификации, весь анализ можно проводить в одной-двух комнатах лаборатории силами одного сотрудника. Этот подход позволяет проводить автоматическую интерпретацию полученных результатов и снимает проблему субъективной оценки электрофореграмм. Существует множество флуоресцентных технологий, различающихся по способам генерации репортерной флуоресценции. В данной работе использовались зонды с комплементарными концевыми последовательностями по типу «молекулярных маяков» (molecular beacons).

Наиболее близким аналогом являются специфичные праймеры на основе фрагментов гена fliC флагеллярного гена B.pseudomallei, В.mallei, предложенные Tungpradabkul S., Sonthayanon P., Krasao Р. и Panyim S. в 2001 г. (PCR of flagellin-based detection of Burkholderia pseudomallei and the mixed population with Burkholderia thailandensis: an application for direct detection from soil. World Melioidosis Congress. - Western Australia, 2001. - Abstract 59). Однако эти разработки предназначались для решения вопросов экологии буркхольдерий, в частности изучения взаимоотношений между B.pseudomallei и В.thailandensis во внешней среде. Предлагаемую тест-систему не апробировали на клиническом материале, хотя авторы и рекомендовали ее использовать при проведении эпидемиологических исследований. Культуры возбудителя сапа в указанной работе не изучались. В работе L.D.Sprague с соавторами (A possible pitfall in the identification of Burkholderia mallei using molecular identification systems based on the sequence of molecular identification systems of the the flagellin fliC gene. FEMS Immunology and Med. Microbiol. - 2002. - Vol.34. - P.231-236) оценивалась возможность использования последовательности fliC для создания системы, дифференцирующей B.pseudomallei, B.mallei и B.thailandensis. Проведенное секвенирование флагеллярного гена четырех штаммов возбудителей сапа и мелиоидоза показало наличие всего лишь одной нуклеотидной замены. В ПЦР с использованием олигонуклеотидных затравок, сконструированных на основе этого региона флагеллярного гена, ампликоны размером 400 п.н. синтезировались при исследовании ДНК всех трех исследуемых микроорганизмов. Поэтому специфичность анализа достигалась дополнительным проведением рестрикционного анализа.

Попытка повышения специфичности указанных выше праймеров путем использования двухстадийной ПЦР была проведена в работе R.M.Hagen с соавторами (Strategies for PCR based detection of DNA in paraffin wax embedded tissues. J. Clin. Pathol: Mol. Pathol. - 2002. - Vol.55. - P.398-400). В этом исследовании ПЦР-метод использовался для анализа чистых культур B.pseudomallei, B.mallei, и B.thailandensis, а также запаянных в парафиновые блоки биоптатов, полученных от экспериментально зараженных B.pseudomallei животных. Однако дифференцировать триаду буркхольдерий с использованием «seminested» - ПЦР не удалось и полученные ампликоны рекомендовано было секвенировать.

Целью настоящего изобретения является получение высокоспецифичных олигонуклеотидных праймеров и флуоресцентно-меченного зонда для идентификации В.pseudomallei и В.mallei методом полимеразной цепной реакции.

Цель достигается конструированием специфичных олигонуклеотидов для идентификации ДНК возбудителей сапа и мелиоидоза, обладающих активностью прямого и обратного праймеров в реакции амплификации, имеющих следующую структуру:

5'-ACG GTC TCC GTC GAC CTC AC-3'-bfl-1s

5'-CGT TGA TCT GCG CAA CCA TC-3'-bfl-as2

Флуоресцентная детекция реализуется при помощи сконструированного олигонуклеотидного зонда с комплементарными концевыми последовательностями по типу «молекулярного маяка»:

5'-(FAM)-CGC TGT CGA CTT CGG CAA CCA GCG-(RTQ1)-3'

Где FAM - карбоксифлуоресцеин, флуоресцентный краситель, длина волны поглощения которого сотавляет 492 нм, а длина волны флуоресценции - 520 нм. RTQ1 - гаситель флуоресценции с диапазоном гашения 470-570 нм.

Характеристика олигонуклеотидных праймеров, зонда и участка амплифицируемой ДНК.

Основываясь на данных, представленных в базе GenBank NCBI (National Center for Biotechnology Information, США), были подобраны праймеры, обозначенные bfl-1s/bfl-2a, комплементарные фрагменту гена fliC (флагеллярный ген) для идентификации В.pseudomallei и В.mallei. Расчетная длина специфического фрагмента составляла 376 п.н.

В качестве положительного контроля эксперименты проводили на типовом штамме В.pseudomallei 100, используя для выделения ДНК обеззараженные суспензии микроорганизма в концентрациях от 1×109 м.к./мл до 1×101 м.к./мл. Апробация праймеров и зонда была осуществлена на наборе штаммов возбудителей сапа и мелиоидоза коллекционного центра МЖК Волгоградского научно-исследовательского противочумного института.

Чувствительность реакции амплификации с флуоресцентной детекцией «по конечной точке» с праймерами bfl-1s/bfl-2a оценивалась при исследовании проб ДНК, выделенных из десятикратных разведений чистых культур возбудителей сапа и мелиоидоза, и составила 1×103 м.к./мл. При использовании ПЦР в режиме реального времени чувствительность реакции удалось повысить до 1×102 м.к./мл.

Для обнаружения возбудителей сапа и мелиоидоза методом ПЦР с флуоресцентной детекцией оценена возможность использования сконструированных праймеров и зондов для анализа биологического материала (кровь, печень, селезенка, легкие и лимфатические узлы) и при экспериментальной инфекции. Показано, что в реакции амплификации возбудитель детектировался в суспензиях органов от всех золотистых хомячков, зараженных культурой данных микроорганизмов, на всех сроках наблюдения.

Примеры конкретного выполнения.

Пример 1. Методика конструирования олигонуклеотидных праймеров и гибридизационного зонда для идентификации ДНК возбудителей сапа и мелиоидоза методом ПЦР.

На основе теоретического изучения секвенированных нуклеотидных последовательностей возбудителей сапа и мелиоидоза, присутствующих в базах данных (EMBL, Genbank, DDBJ) для конструирования праймеров была выбрана последовательность гена fliC (флагеллярный ген), размер которой составляет 1534 п.н. (GenBank NCBI, GeneID: 4793196). Расчетная длина фрагмента ДНК, фланкируемого предлагаемыми праймерами, - 376 п.н.

При подборе зондов руководствовались общими требованиями к олигонуклеотидным затравкам, используемым в ПЦР. При использовании компьютерных программ была проанализирована структура выбранных пар праймеров и зондов (образование димеров, шпилек и других вторичных структур) и показана их теоретическая пригодность для успешной инициации реакции амплификации и гибридизации.

Праймеры были проанализированы с помощью компьютерной программы BLAST на web-сервере Национального Центра Биотехнологической Информации (NCBI) (http://www.ncbi.nlm.nih.gov/BLAST/) для установления гомологии между ними и нуклеотидными последовательностями близкородственных буркхольдерий и гетерологичных микроорганизмов, присутствующих в базах данных (EMBL, GenBank, DDBJ). На момент проведения компьютерного анализа гомологии выявлено не было.

Пример 2. Амплификация специфических фрагментов ДНК с помощью разработанных праймеров и зонда для идентификации ДНК возбудителей сапа и мелиоидоза проводилась в двух форматах: с детекцией результатов ПЦР «по конечной точке» и в режиме реального времени.

В состав реакционных смесей входили комплементарные специфическому фрагменту олигонуклеотидные зонды, меченные флуорофором FAM и гасителем флуоресценции (RTQ1), а также праймеры, дезоксирибонуклеозидтрифосфаты, буферный раствор и фермент Taq-полимераза. Зонд для внутреннего контроля использовали при проверке тест-систем на специфичность и при анализе способов выделения ДНК. Для предупреждения испарения в процессе амплификации на мультициклере «Терцик» на поверхность смеси наслаивали 20 мкл минерального масла. В ПЦР с детекцией «по конечной точке» использовали 5 мкл образца, с детекцией в режиме реального времени - 10 мкл. Для отрицательного контроля в пробирку вместо образца вносили такой же объем дистиллированной воды.

Амплификацию продолжительностью 45 циклов проводили в микроцентрифужных пробирках (0,5 мл) на мультициклере «Терцик» (ЗАО «НПФ ДНК-технология», г.Москва) и на приборах «Rotor-Gene 6000» («Corbett Research», Австралия) и «SmartCycler» (Cepheid, США) в режиме реального времени в микроцентрифужных пробирках (0,2 мл) в объеме 25 мкл с использованием «горячего старта».

Анализ продуктов ПЦР осуществляли с помощью детектора флуоресценции «Gene» (ЗАО «НПФ ДНК-технология», г.Москва) «по конечной точке» и в режиме реального времени - «Rotor-Gene 6000» («Corbett Research», Австралия) и «SmartCycler» («Cepheid», США). Регистрацию результатов проводили в табличной и графической форме с помощью компьютерных программ. В режиме реального времени результаты анализировали по наличию или отсутствию пересечения кривой флуоресценции с пороговой линией, что определяется значением порогового цикла «Ct» в соответствующей графе в таблице результатов.

Параллельно проводили анализ продуктов ПЦР методом гель-электрофореза в 1,5% агарозном геле с окраской фрагментов ДНК этидиум бромидом и визуализацией в УФ-свете. Результаты оценивали по наличию или отсутствию в геле после электрофореза фрагментов ДНК необходимого размера.

Специфичность полосы амплифицированной ДНК подтверждалась ее положением по отношению к контрольным маркерным фрагментам (леддер 100 п.н. ДНК, ООО «Интерлабсервис», Москва) и ДНК-стандарту (ДНК, выделенная из В.mallei 10230 или В.pseudomallei 100 в концентрации 1×105 м.к./мл).

Пример 3. Определение чувствительности и специфичности реакции амплификации с помощью разработанных олигонуклеотидных праймеров и зонда для идентификации ДНК возбудителей сапа и мелиоидоза.

Чувствительность реакции амплификации с разработанными специфичными праймерами и зондом оценивалась при исследовании проб ДНК, выделенных из бактериальных взвесей клеток, выращенных на плотных питательных средах в 4 мл 0,15 М NaCl в концентрации, соответствующей 1×109 м.к./мл по стандартному образцу мутности ГИСК им. Л.А.Тарасевича (ОСО 42-28-85 П), и раститрованых до необходимых разведений (от 1×109 до 1×10 м.к./мл). Из разведения 1×103 м.к./мл делали контрольный высев по 0,1 мл каждой пробы на чашки Петри с агаром BHI для определения количества КОЕ. Обеззараживание материала проводили в соответствии с МУ 1.3.1794-03 и МУ 3.5.5.1034-01.

Обеззараживание исследуемых проб производят добавлением раствора мертиолята натрия до конечной концентрации 0,1% и прогреванием в течение 30 мин при температуре 56°С. Выделение ДНК из чистых культур буркхольдерий осуществляют с помощью метода нуклеосорбции на силикагеле в присутствии гуанидинтиоционата (R.Boom et al. - 1990 г.). Постановку реакции ПЦР осуществляют, как описано в примере 2. При тестировании коллекции культур В.mallei и В.pseudomallei Волгоградского научно-исследовательского противочумного института с использованием разработанных олигонуклеотидных праймеров и зонда продукт амплификации синтезировался с ДНК всех штаммов возбудителей сапа и мелиоидоза с чувствительностью 1×102-1×103 м.к./мл. С другими видами близкородственных буркхольдерий и гетерологичных микроорганизмов в реакции ПЦР с разработанными праймерами в 100% случаев получен отрицательный результат.

Таким образом, разработанные праймеры bfl-1s/bfl-2a и зонд могут быть использованы для идентификации возбудителей сапа и мелиоидоза и позволяют в короткий срок с высокой чувствительностью и специфичностью детектировать возбудителей сапа и мелиоидоза в биологическом материале и объектах окружающей среды.

Олигонуклеотидный зонд с комплементарными концевыми последовательностями по типу «молекулярного маяка», обеспечивающий флуоресцентную детекцию при идентификации возбудителей сапа и мелиоидоза B.pseudomallei и В.mallei методом полимеразной цепной реакции с олигонуклеотидными праймерами b23s7/b23a8, комплементарными фрагменту гена 23S рРНК B.pseudomallei и B.mallei: 5'-(FAM)-GCCTCGGTGAGTCGGCCCCTAAGGCGAGGC-(RTQ1)-3', где FAM - карбоксифлуоресцеин, флуоресцентный краситель, длина волны поглощения которого составляет 492 нм, а длина волны флуоресценции - 520 нм, RTQ1 - гаситель флуоресценции с диапазоном гашения 470-570 нм.



 

Похожие патенты:
Изобретение относится к области биохимии, молекулярной биологии, ветеринарии и медицины. .
Изобретение относится к области клинической биохимии и касается способа выделения внеклеточных ДНК (внДНК) из крови. .

Изобретение относится к биотехнологии; инозин, а также 5`-инозиновую кислоту получают с использованием бактерий Escherichia coli, при этом продукция инозина указанными бактериями увеличена за счет увеличения активности белка, кодируемого геном yijE.

Изобретение относится к биотехнологии и может быть использовано в медицине для выявления генетического материала вируса Крымской-Конго геморрагической лихорадки (ККГЛ) в пробах.

Изобретение относится к биотехнологии, биологии, медицине и ветеринарии. .

Изобретение относится к биотехнологии, а именно к генетической инженерии животных, и может быть использовано в ветеринарной микробиологии для выявления возбудителя некробактериоза жвачных животных Fusobacterium necrophorum и дифференциации его от атипичных форм Fusobacterium pseudonecrophorum и другой микрофлоры.

Изобретение относится к биотехнологии, в частности к генетической инженерии, и может быть использовано для идентификации ДНК вируса герпеса человека 6 типа (ВГЧ-6). .

Изобретение относится к области молекулярной биологии и может быть использовано для обнаружения вируса иммунодефицита человека типа 1 (ВИЧ-1). .
Изобретение относится к биотехнологии, молекулярной биологии

Изобретение относится к области молекулярной биологии и генетике

Изобретение относится к области биотехнологии и касается олигонуклеотидных праймеров для генотипирования В.mallei

Изобретение относится к области биотехнологии и касается олигонуклеотидных праймеров для генотипирования B.mallei

Изобретение относится к области биотехнологии и касается олигонуклеотидных праймеров для генотипирования В.mallei

Изобретение относится к области биотехнологии и касается олигонуклеотидных праймеров для генотипирования В.mallei

Изобретение относится к области биотехнологии и касается олигонуклеотидных праймеров для генотипирования В.mallei

Изобретение относится к области биотехнологии, молекулярной биологии, молекулярной эпидемиологии

Изобретение относится к области биотехнологии и касается олигонуклеотидных праймеров для генотипирования В.mallei
Наверх