Способ защиты от коррозии погружного электроцентробежного насоса, подвешенного на колонне насосно-компрессорных труб

Изобретение относится к нефтегазовой промышленности, в частности к способу защиты скважинного оборудования от коррозии. Техническим результатом является повышение эффективности защиты корпуса погружного электроцентробежного насоса. Предложенный способ включает: размещение в стволе скважины вместе с колонной насосно-компрессорных труб и электроцентробежным насосом, протектор с изоляцией контакта со стенками скважины. При этом корпус электроцентробежного насоса дополнительно изолируют от стенок скважины с помощью центраторов-изоляторов, выполненных из материала, имеющего одинаковый потенциал с корпусом насоса. Причем верхний центратор-изолятор располагают на подвесном патрубке насоса и размещают в наднасосном пространстве скважины, а нижний - соединяют переводником с компенсатором гидрозащиты насоса и размещают в поднасосном пространстве. Протектор присоединяют при помощи переводника к нижнему центратору-изолятору. При этом верхний центратор-изолятор выполняют в виде цилиндрической втулки, а нижний - в виде цельного корпуса, снабженного наружной и внутренней присоединительными резьбами. Центраторы-изоляторы выполнены с ребрами, снабженными изолирующими диэлектрическими прокладками. 3 ил.

 

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации нефтедобывающих скважин погружными электроцентробежными насосами.

Известна погружная электрическая машина, содержащая корпус, в канавки на поверхности которого запрессованы кольца-обручи, в пазах пакета статора уложена трехфазная протяжная обмотка из провода с полимерной изоляцией, на пакеты ротора напрессована гильза из композиционного магнитоэлектропроводящего материала, в которую по торцам вплотную к пакету стали ротора вставлены круговые кольца-протекторы и приварены к ней (патент РФ №2106733, кл. H02K 5/12, опубл. 1998.03.10).

Наиболее близким техническим решением является способ защиты от коррозии погружного электроцентробежного насоса, подвешенного на колонне насосно-компрессорных труб, включающий размещение в стволе скважины протектора, причем в качестве протектора используют гальванический протектор, выполненный из материала, имеющего электродный потенциал, меньший по сравнению с материалом корпуса электроцентробежного насоса, протектор выполняют в форме длинномерного цилиндрического стержня с армированием по центру стальной проволокой, протектор размещают в поднасосном пространстве в стволе скважины с изоляцией контакта со стенками скважины, а контакт протектора с корпусом электроцентробежного насоса осуществляют через стальную армирующую проволоку (патент РФ №2231629, МПК E21B 41/02, опубл. 27.06.2004 г.).

Известный способ позволяет эффективно производить защиту корпуса электроцентробежного насоса от коррозии агрессивной пластовой жидкости, однако в наклонных скважинах, когда корпус электроцентробежного насоса касается стенок эксплуатационной колонны, происходит коррозия корпуса насоса в местах взаимодействия.

В изобретении решается задача повышения эффективности защиты корпуса электроцентробежного насоса от коррозии в скважинах с кривизной ствола и повышение межремонтного периода работы насоса.

Задача решается тем, что в способе защиты от коррозии погружного электроцентробежного насоса, подвешенного на колонне насосно-компрессорных труб, включающем размещение в стволе скважины протектора с изоляцией контакта со стенками скважины, согласно изобретению корпус электроцентробежного насоса дополнительно изолируют от стенок эксплуатационной колонны скважины центраторами-изоляторами, выполненными из материала, имеющего одинаковый электродный потенциал с корпусом насоса, причем центраторы-изоляторы выполняют с ребрами и снабжают изолирующими диэлектрическими прокладками, при этом корпус верхнего центратора-изолятора выполняют в виде цилиндрической втулки, располагают на подвесном патрубке насоса и размещают в наднасосном пространстве скважины, а верхний центратор-изолятор выполняют в виде цельного корпуса, снабжают наружной и внутренней присоединительными резьбами, соединяют переводником с компенсатором гидрозащиты насоса и размещают в поднасосном пространстве, а протектор переводником присоединяют к нижнему центратору-изолятору.

Признаками изобретения являются:

1) размещение в стволе скважины протектора;

2) размещение на корпусе электроцентробежного насоса центраторов-изоляторов;

3) центраторы-изоляторы в виде металлического цилиндрического корпуса с ребрами;

4) ребра центратора-изолятора снабжены диэлектрическими прокладками;

5) размещение центраторов-изоляторов в наднасосном и поднасосном пространстве в стволе скважины с изоляцией взаимодействия корпуса погружного электроцентробежного насоса со стенками обсадной колонны скважины;

6) корпус электроцентробежного насоса и центраторы-изоляторы имеют одинаковый электродный потенциал.

Признак 1 является общим с прототипом, признаки 2-6 являются отличительными признаками изобретения.

Сущность изобретения.

Причинами выхода из строя электроцентробежного насоса, подвешенного на колонне насосно-компрессорных труб в скважине, имеющей кривизну ствола, являются высокая коррозионная активность перекачиваемой среды и электрохимическая активность корпуса насоса и стенок эксплуатационной колонны вследствие влияния электромагнитного поля двигателя электроцентробежного насоса и разности потенциалов эксплуатационной колонны и электроцентробежного насоса. Если для защиты наружной поверхности электроцентробежного насоса от высокой коррозионной активности перекачиваемой среды используют гальванический протектор, выполненный из материала, имеющего электродный потенциал, меньший по сравнению с материалом корпуса электроцентробежного насоса, то для общей защиты от коррозии наружной поверхности электроцентробежного насоса предлагается данный способ.

Для защиты от коррозии электроцентробежного насоса, подвешенного на колонне насосно-компрессорных труб, используют центраторы-изоляторы в виде металлических корпусов с ребрами по бокам, которые имеют изолирующие прокладки из диэлектрического материала. Корпус центратора-изолятора выполнен из стали имеющей одинаковый электродный потенциал с материалом корпуса электроцентробежного насоса. Взаимодействие центратора-изолятора со стенками скважины осуществляется через прокладки из диэлектрического материала. В качестве материала прокладок на ребрах центратора-изолятора могут быть использованы текстолит или смесь резиновая 3826C.

Для исключения прямого взаимодействия корпуса электроцентробежного насоса со стенками скважины центраторы-изоляторы размещают в наднасосном и поднасосном пространстве скважины. Пример конкретного выполнения способа.

Выполняют защиту от коррозии погружного электроцентробежного насоса типа ЭЦН 400-950, подвешенного на колонне насосно-компрессорных труб длиной 1234 м в нефтедобывающей скважине с кривизной ствола 17, 45 градусов.

На фиг.1 показан общий вид электропогружного насоса с протектором и центраторами-изоляторами.

На фиг.2 изображен общий вид верхнего центратора-изолятора.

На фиг.3 изображен общий вид нижнего центратора-изолятора.

Погружной электроцентробежный насос 1 подвешивают на колонне насосно-компрессорных труб 2. На подвесном патрубке насоса 3 размещают верхний центратор-изолятор 4. Нижний центратор-изолятор 5 посредством переводника 7 размещают в поднасосном пространстве скважины на компенсаторе гидрозащиты насоса 6. При помощи переводника 8 протектор 9 размещают в поднасосном пространстве скважины на нижнем центраторе-изоляторе 5.

Верхний центратор-изолятор 5 содержит корпус в виде цилиндрической втулки 10 с металлическими ребрами 11 по бокам и изолирующими прокладками 12.

Корпус нижнего центратора-изолятора 13 выполняют цельным и он имеет ребра 14, диэлектрические прокладки 15, наружную 16 и внутреннюю резьбу 17. Диэлектрические прокладки центраторов-изоляторов крепятся к ребрам корпуса болтами или винтами 18. Головки болтов или винтов размещаются в диэлектрических прокладках ниже верхней кромки.

Применение предложенного способа позволит защитить от коррозии электроцентробежные насосы, работающие в скважинах с кривизной ствола.

Применение предложенного способа позволит более эффективно защитить от коррозии электроцентробежные насосы, работающие в скважинах с кривизной ствола.

Предлагаемый способ защиты погружного электроцентробежного насоса от коррозии проходит промысловые испытания на объектах ОАО «Татнефть».

Способ защиты от коррозии погружного электроцентробежного насоса, подвешенного на колонне насосно-компрессорных труб, включающий размещение в стволе скважины протектора с изоляцией контакта со стенками скважины, отличающийся тем, что корпус электроцентробежного насоса дополнительно изолируют от стенок эксплуатационной колонны скважины центраторами-изоляторами, выполненными из материала, имеющего одинаковый электродный потенциал с корпусом насоса, причем центраторы-изоляторы выполняют с ребрами и снабжают изолирующими диэлектрическими прокладками, при этом корпус верхнего центратора-изолятора выполняют в виде цилиндрической втулки, располагают на подвесном патрубке насоса и размещают в наднасосном пространстве скважины, а нижний центратор-изолятор выполняют в виде цельного корпуса, снабжают наружной и внутренней присоединительными резъбами, соединяют переводником с компенсатором гидрозащиты насоса и размещают в поднасосном пространстве, а протектор переводником присоединяют к нижнему центратору-изолятору.



 

Похожие патенты:
Изобретение относится к нефтегазодобывающей промышленности и может быть применено для защиты скважин от коррозии. .
Изобретение относится к нефтедобывающей промышленности, в частности к доставке реагента в скважину и подаче его в поток пластовой жидкости для предотвращения коррозии, отложения солей и парафинов на глубинно-насосном оборудовании.

Изобретение относится к нефтегазовой промышленности, в частности к способам защиты скважинного оборудования от коррозии и отложений смоло-парафинистых отложений.
Изобретение относится к нефтедобывающей промышленности и может найти применение при очистке призабойной зоны нагнетательной скважины. .
Изобретение относится к нефтегазовому комплексу, в частности к способам определения коррозии цементного камня. .

Изобретение относится к нефтяной промышленности и может быть использовано для интенсификации добычи нефти бесштанговыми насосами в условиях отложений асфальтенов, парафинов и коррозии.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам для дозирования в нефтяные скважины ингибиторов коррозии, парафиноотложений, солеотложения и деэмульгаторов.

Изобретение относится к оборудованию для систем катодной защиты от подземной коррозии насосно-компрессорных и обсадных труб газодобывающих скважин и может быть использовано в нефтегазодобывающей отрасли

Изобретение относится к нефтегазодобывающей области, в частности к методам и средствам защиты скважинных установок электроцентробежных насосов при добыче углеводородного сырья

Группа изобретений относится к нефтяной промышленности, в частности к способу и устройству для защиты скважинного оборудования. Способ нанесения защитного покрытия на внутреннюю и наружную поверхности труб включает спуск устройства для нанесения покрытия в колонну труб, расплавление и нанесение его на стенки. Защитное покрытие наносят на наружную поверхность соединительных муфт в количестве не более трех с помощью устройства для нанесения покрытия на наружную поверхность. Защитное покрытие на наружную поверхность муфт наносят при спуске колонны труб в скважину. Нанесение защитного покрытия на внутреннюю поверхность нескольких насосно-компрессорных труб производят с поверхности земли устройством для нанесения покрытия на внутреннюю поверхность. Затем заглаживают покрытие калибровочным узлом. Устройство для нанесения защитного покрытия на внутреннюю поверхность труб включает емкость для расплавления защитного состава, нагревательные элементы, поршень и калибровочный узел. Калибровочный узел является гибким, внутри него установлены пружины. Пружины позволяют изменять наружный диаметр калибровочного узла при изменении диаметра трубы. На устройстве установлены датчики давления, температуры, прожекторы и ВЭБ камеры, позволяющие контролировать процесс нанесения покрытия. Изобретение позволяет увеличить срок службы скважинного оборудования, обеспечивает повышение технологичности и качества процессов нанесения покрытия, повышение безопасности и надежности оборудования. 2 н.п.ф-лы, 2 ил.

Изобретение относится к буровой трубе, способу ее сооружения, покрытию для нанесения на буровую трубу и способу сооружения защищенной таким покрытием буровой трубы. Буровая труба включает: полимерную основную структуру, образованную из армированного волокнами бисмалеимидного полимера; и гидрофобное покрытие, включающее малеимидный комплекс, химически связанное с полимерной основной структурой. Покрытие образует ковалентную связь с полимерной основной структурой. Способ сооружения буровой трубы включает: сооружение основной структуры буровой трубы из полимерного материала; изготовление гидрофобного покрытия; и создание ковалентной химической связи между покрытием и основной структурой. Покрытие для нанесения на буровую трубу выполнено из множества слоев, из которых по меньшей мере один слой образован из материала, содержащего химический реагент, выбранный для реакции в присутствии скважинных текучих сред, которые являются разрушающими по отношению к полимерному материалу. Технический результат - обеспечение образования покрытия на буровой трубе, которое в достаточной степени связано с нижележащей основной структурой полимерного материала, чтобы противостоять агрессивной окружающей среде, присутствующей в скважинном применении. 4 н. и 26 з.п. ф-лы, 10 ил.

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента предложено использовать горячую нефть по технологии динамического воздействия. С этой целью выше и ниже глубинного насоса предварительно устанавливают камеры одинакового объема с электронагревательным элементом и датчиками температуры. Скважинную нефть после остановки ЭЦН нагревают до необходимой температуры в нижней камере и перемещают через полость насоса самим же насосом в верхнюю камеру нагрева. Для снижения скорости движения горячей нефти через полость насоса производительность последнего снижают с помощью частотного регулятора тока. При наличии клапана обратного трехпозиционного (КОТ) над верхней камерой нагрева горячую нефть возвращают обратно в нижнюю камеру с устья скважины с помощью передвижного насосного агрегата типа ЦА-320. При отсутствии выше насоса и верхней камеры нагрева обратного клапана типа КОТ горячая нефть самотеком под действием сил гравитации спускается в нижнюю камеру. Общее время циклического воздействия горячей нефти на отложения в полости глубинного электроцентробежного насоса должно быть равным времени, необходимому для полного растворения АСПО. Это время предварительно определяется в лабораторных условиях с моделированием скважинных условий. Периодическое применение способа на осложненных скважинах позволит повысить сроки их безаварийной эксплуатации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области нефтедобывающей промышленности при добыче нефти с больших глубин, более 500 м, и при содержании в нефти газов. Техническим результатом изобретения является исключения или уменьшения эффекта кавитационной эрозии насосно-компрессорных труб. Сущность изобретения: способ защиты насосно-компрессорной трубы от кавитационной эрозии включает закачивание воды в нефтяной пласт через нагнетательную трубу и отбор скважинной жидкости с растворенными в ней газами через насосно-компрессорную трубу - НКТ. При содержании растворенных газов не менее 100 м3 на 1 м3 скважинной жидкости давление на выходе из скважины либо плавно увеличивают от 0,1 до 2 МПа с шагом 0,01-0,003 МПа/неделя, либо это давление плавно поддерживают в 1,1-1,2 раза выше пороговой величины давления вскипания основного компонента жидкого газа, растворенного в нефти. 2 ил.

Изобретение относится к устройствам для очистки и защиты труб от коррозионного разрушения и от разрушения под воздействием трения. Устройство включает цилиндрический корпус с центрирующим элементом. Корпус выполнен полым, многослойным. Наружный слой выполнен из протекторного сплава. На поверхности корпуса выполнена сквозная прорезь, соединяющая противоположные торцы корпуса и имеющая участки, расположенные в продольном направлении корпуса, и участок, расположенный в поперечном направлении корпуса. Ширина участков прорези, расположенных в продольном направлении, не менее внутреннего диаметра корпуса. Ширина участка прорези, расположенного в поперечном направлении, больше внутреннего диаметра корпуса. Центрирующий элемент выполнен в виде щетки из электропроводного материала. Расширяются функциональные возможности, повышается удобство крепления. 2 з.п. ф-лы, 3 ил., 1 табл.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к ингибированию образования отложений и коррозии скважинного оборудования. Установка включает электромагнитный излучатель, двухканальный генератор, электронный блок управления, имеющий выход, подключенный к входу генератора, блок сопряжения с погружным электродвигателем, датчики параметров скважинной среды, подключенные к блоку управления. Излучатель содержит сердечник из магнитомягкого высокочастотного материала на скважинном оборудовании с пазами, в которых размещены витки аксиальной обмотки, ортогональную обмотку, витки которой расположены перпендикулярно оси скважинного оборудования. Генератор подключен одним управляющим выходом к аксиальной обмотке, вторым управляющим выходом к ортогональной обмотке. Повышается эффективность ингибирования образования отложений и коррозии. 3 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации обсадных колонн скважин и нефтепромысловых трубопроводов. Технический результат заключается в повышении эффективности защиты от коррозии обсадных колонн скважин и нефтепромыслового оборудования, повышении надежности их работы, увеличении межремонтного интервала. Способ катодной защиты обсадных колонн скважин и нефтепромысловых трубопроводов от коррозии включает этапы, на которых предварительно бурят скважину до глубины, большей на 2,5-3 м длины анодного заземлителя, разбуривают скважину в интервале заглубления анодного заземлителя, в который устанавливают ковер, по окончании бурения непосредственно перед спуском электродов в скважину закачивают до верхнего уровня ковера глинистый раствор, устанавливают анодный заземлитель, устанавливают защитный ток для начального периода эксплуатации системы катодной защиты, производят поляризацию в течение 3-7 суток, после чего измеряют общие и поляризационные потенциалы защищаемых сооружений, при изменении силы защитного тока более чем на 20% от установленной делают вывод об утечке глинистого раствора и закачивают до верхнего уровня анода анодного заземлителя гель, состоящий на 100 литров воды: 2 кг мела, 2 кг клея марки КМЦ и 1 кг соли, закачанный гель выдерживают до превращения в желеобразное состояние 5-10 часов, снова замеряют силу тока, по восстановлению силы тока до исходной судят о полном восстановлении токопроводности между грунтом и анодом и о достижении катодной защиты скважины. Устройство катодной защиты обсадных колонн скважин и нефтепромысловых трубопроводов от коррозии содержит электрод-токоввод с кабелем, рабочий электрод, кабельный вывод, контрольно-измерительный пункт, перфорированную полимерную газоотводную трубку, ковер, трубу обсаживающую полиэтиленовую, канат капроновый, заполнитель, в качестве которого используют гель, состоящий на 100 литров воды: 2 кг мела, 2 кг клея марки КМЦ и 1 кг соли. 2 н. и 6 з.п. ф-лы, 2 ил.
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения. Техническим результатом является экономия электроэнергии и устранение коррозии зон трубопроводов возле электроизолирующих вставок. Способ эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения включает создание разности потенциалов между трубопроводами и заземлителями, электрическое разъединение пункта схождения трубопроводов и самих трубопроводов с помощью электроизолирующих вставок, измерение разности потенциалов между концами электроизолирующей вставки и/или измерения падения напряжения на электроизолирующей вставке, установку величины защитного потенциала, обеспечивающего необходимую длину защищаемой зоны, использование диэлектрического материала наружной изоляции трубопроводов, контроль герметичности трубопровода и целостности его наружной изоляции. Возле каждого трубопровода размещают стационарные измерительные неполяризующиеся электроды сравнения длительного действия и перпендикулярно оси трубопровода вспомогательные стальные датчики потенциала. Выполняют электрическую коммутацию трубопровода с завышенным значением потенциала с трубопроводом с заниженным значением потенциала и регулирование величины устанавливаемых потенциалов на обоих трубопроводах, периодическое определение потенциалов с использованием стационарных измерительных неполяризующихся электродов сравнения длительного действия и вспомогательных стальных датчиков потенциала на коммутируемых трубопроводах с идентификацией каждого измерения по времени и разрыв коммутации при возвращении защитного поляризационного потенциала трубопровода к нормальному значению, регулировку защитного потенциала в точке создания разности потенциалов между трубопроводами и заземлителями, по результатам периодического определения потенциалов с использованием стационарных измерительных неполяризующихся электродов сравнения длительного действия и вспомогательных стальных датчиков потенциала. 1 з.п. ф-лы.
Наверх