Способ анализа взвешенных частиц

Изобретение относится к технике измерений, может использоваться в медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях науки и техники, связанных с анализом взвешенных частиц. Способ анализа взвешенных частиц включает освещение потока частиц световым пучком и регистрацию изображений частиц, по которым и судят о размерах последних. Причем после прохождения потока частиц системой объективов и зеркал световой пучок разворачивают равномерно под углом шестьдесят градусов к исходному пучку и вновь пропускают через поток, где световой пучок проходит «трижды» через счетную область потока частиц. При этом в плоскость регистрации эти изображения переносятся объективом видеокамеры, подключенной к переносному компьютеру. Технический результат изобретения - повышение информативности данных для оценки формы частиц, а для частиц достаточно простой формы эллипсоида вращения дает возможность определения как характерные размеры частиц, так и их ориентации в пространстве. 2 ил.

 

Изобретение относится к технике измерений, может использоваться в медицине, биологии, экологии, химической промышленности, порошковой металлургии и других областях науки и техники, связанных с анализом взвешенных частиц.

Известен способ анализа взвешенных частиц (А.с. SU 1278628, G01N 15/02, от 23.12.1986), включающий освещение потока частиц и регистрацию амплитуд импульсов рассеянного частицами света, по которым и судят о размерах частиц.

Недостаток данного способа состоит в том, что он не предоставляет информацию о форме частиц, поскольку определяется не геометрический, а так называемый сферооптический размер (данной частице ставят в соответствие размер сферы, дающей такую же амплитуду импульса рассеянного света).

Известен способ анализа взвешенных частиц (А.с. SU 1032370, G01N 15/02, от 30.07.1983), включающий освещение потока частиц плоскими полосами света, разделенными полосами тени различной ширины, и регистрацию количества импульсов, рассеянного каждой частицей света, по которым и судят о размерах частиц.

Недостаток этого способа состоит в том, что размер частиц (хотя и геометрический) определяется лишь в одном направлении, перпендикулярном направлению полос, т.е. способ также не дает информацию о форме частиц.

Известен способ анализа взвешенных частиц (Беляев С.П., Никифорова Н.К., Смирнов В.В. и др. Оптико-электронные методы изучения аэрозолей. М.: Энергоиздат, 1981. с.126-130), включающий освещение потока частиц световым пучком и регистрацию изображений частиц, по которым и судят о размерах последних.

Недостаток данного способа состоит в том, что размеры частиц определяются лишь в одной плоскости проекции, кроме того, для ограничения счетного объема вдоль оси светового пучка приходится формировать этот пучок с заданной степенью когерентности и достаточно сложным образом дополнительно обрабатывать изображения, т.е. реализация способа весьма непроста.

Наиболее близким по технической сути к предлагаемому способу является способ анализа взвешенных частиц (Пат. RU 2054652, G01N 15/02 от 20.02.1996), позволяющий получить на фотокатоде видеокамеры одновременно два изображения, соответствующие проекции частицы на две взаимно перпендикулярные плоскости.

Недостаток данного способа состоит в том, что размеры частиц определяются лишь в двух плоскостях проекции, что затрудняет оценку формы несферических частиц при их хаотической ориентации в потоке.

Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении информативности данных для оценки формы частиц, а для частиц достаточно простой формы эллипсоида вращения дает возможность определения как характерные размеры частиц, так и их ориентации в пространстве.

Этот результат достигается тем, что способ определения размеров и концентрации взвешенных частиц состоит в освещении потока частиц световым пучком и регистрации параметров световых сигналов, формируемых частицами при их пролете через выделенную область потока частиц. Причем световой пучок после прохождения потока с использованием отражающих зеркал разворачивают под углом шестьдесят градусов к исходному пучку и вновь пропускают через поток, где регистрация изображения частиц происходит с трех равномерных углов светового потока.

В этом случае каждая частица фактически освещается тремя пучками света, а ее изображение в каждом из пучков несет информацию о проекции частицы на плоскость, т.е. информативность о форме частиц повышается как минимум вдвое в сравнении с известным способом. Причем применение цифрового распознавания изображений частиц, получаемых в ходе оперативного телевизионного анализа, позволяет хранить в ЭВМ массивы данных о размерах и формах частиц, что дает в дальнейшем создавать 3D модели взвешенных частиц.

На фиг.1 представлена общая схема устройства для реализации способа; на фиг.2 показан вид изображений в плоскости регистрации.

Устройство содержит источник 1 света, объектив 2, фокусирующий свет в некоторую область 3 потока частиц. На пути светового пучка последовательно под углом шестьдесят градусов расположены объективы 4, 7, 8, 11, 12, а также расположены зеркала 5, 6, 9, 10, которые установлены так, что ось светового пучка на выходе направлена в область потока частиц.

Объективы 2 и 4, 7 и 8, 11 и 12 лежат на одной оси и проходят через счетную область пучка, где пересекаются в некоторой точке A в плоскости регистрации фотокатода передающей видеокамеры 13, подключенной к персональному компьютеру 14.

Работает устройство по предлагаемому способу следующим образом.

Поток частиц (область 3) освещают световым пучком, формируемым источником 1 и объективом 2. После прохождения потока этот световой пучок системой объективов 4, 7, 8, 11, 12 и зеркал 5, 6, 9, 10 разворачивают равномерно под углом шестьдесят градусов к исходному пучку и вновь пропускают через поток частиц, где световой пучок проходит "трижды" через счетную область потока частиц, в плоскость регистрации эти изображения переносятся соответствующим объективом видеокамеры 13, подключенной к персональному компьютеру 14. Изображение 16 - есть проекция частицы на плоскость XOZ, а изображение 17 - проекция на плоскость YOZ. Одновременно объектив видеокамеры строит в плоскости регистрации третье изображение 15 частицы, соответствующее ее проекции на плоскость XOY (это изображение формируется световым пучком, распространяющимся вдоль оси OZ).

Таким образом, в плоскости регистрации имеется три проекции частицы. При этом поскольку частица смещена относительно осей OX, OY на расстояния, превосходящие соответствующие размеры частиц, то все три изображения пространственно разнесены. При совпадении частицы с общим фокусом объективов все три изображения наложатся друг на друга в окрестности точке A (фиг.2), этого наложения можно избежать соответствующей юстировкой зеркал.

Очевидно, что в этой схеме возможно ограничение счетного объема, допустимой глубиной резкости, используя в качестве критерия либо расстояние между изображениями либо соотношение размеров различных проекций по одной и той же оси координат.

Таким образом, рассмотренный способ, в отличие от известных способов, позволяет получить в плоскости регистрации одновременно три изображения каждой частицы. Это существенно повышает информативность измерений, в частности дает возможность определения параметров частицы при ее произвольной ориентации.

Способ анализа взвешенных частиц, включающий освещение потока частиц световым пучком и регистрацию изображений частиц, по которым и судят о размерах последних, отличающийся тем, что после прохождения потока частиц системой объективов и зеркал световой пучок разворачивают равномерно под углом шестьдесят градусов к исходному пучку и вновь пропускают через поток, где световой пучок проходит «трижды» через счетную область потока частиц, а в плоскость регистрации эти изображения переносятся объективом видеокамеры, подключенной к переносному компьютеру.



 

Похожие патенты:
Изобретение относится к области медицины, а именно, к патологической анатомии. .

Изобретение относится к контрольно-измерительной технике, а именно к оптико-электронным устройствам контроля параметров дисперсных сред. .

Изобретение относится к измерительной технике, а именно к фотометрии для контроля агрегационной способности частиц коллоидных систем в широких областях техники. .

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к способам автоматического измерения частиц потока материала, в процессе мокрого или сухого измельчения в области обогащения полезных ископаемых, в горно-химической, абразивной, строительной и других отраслях промышленности.

Изобретение относится к области медицины, а именно к разделу детской и подростковой гинекологии. .

Изобретение относится к спектральным методам анализа состава и свойств веществ, а точнее к диагностике и метрологии наноразмерных частиц. .

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР) при исследованиях наноструктур методом ЭПР. .
Изобретение относится к области медицины, а именно к онкологии. .

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами, в частности для измерения размеров капель воды в сырой нефти.

Изобретение относится к измерительной технике, в частности к способам измерения размеров дисперсных частиц, может быть использовано в двигателях для оценки дисперсного состава выхлопных газов

Изобретение относится к измерению характеристик частиц в двухфазных средах оптическими методами
Изобретение относится к мукомольной и хлебопекарной промышленностям, в частности к способам определения твердозерности пшеницы

Изобретение относится к приборам для определения дисперсного состава аэрозоля с помощью электронно-оптических средств

Изобретение относится к измерительной технике и может быть использовано в микробиологии, биотехнологии, медицине и т.д

Изобретение относится к способу контроля крупности частиц аналитической пробы

Изобретение относится к способам и устройствам для измерения и предназначено для измерения распределения по размерам частиц, находящихся во взвешенном состоянии в жидкости или газе, а именно для оперативного технологического контроля размеров различных нанопорошков при их производстве, в частности в химической и пищевой промышленности, в фармакологии, биологии и медицине

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженного притоком воздуха, включает датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, при этом устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами
Наверх