Способ определения структуры гибридной вычислительной системы



Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы
Способ определения структуры гибридной вычислительной системы

 


Владельцы патента RU 2436151:

Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)

Изобретение относится к области вычислительной техники и может применяться для построения гибридных вычислительных систем. Технический результат заключается в уменьшении длительности вычислительного процесса за счет создания структуры, учитывающей особенности конкретного процесса. В способе для определения структуры гибридной вычислительной системы учитывают удельное ускорение ρ длительности выполнения SIMD фрагмента программы одним ускорителем по сравнению с длительностью выполнения этого фрагмента одним процессором, а также учитывают долю φ длительности выполнения MIMD фрагмента одним процессором и долю 1-φ длительности выполнения SIMD фрагмента одним процессором относительно длительности выполнения программы одним процессором, при этом при увеличивают количество процессоров MIMD компоненты, а при увеличивают количество ускорителей SIMD компоненты. 4 ил.

 

Изобретение относится к области вычислительной техники и может применяться для построения гибридных вычислительных систем, содержащих MIMD-компоненту, состоящую из одного или нескольких процессоров, и SIMD-компоненту, состоящую из одного или нескольких арифметических ускорителей.

Гибридная система MIMD-SIMD (гибридная система) является сочетанием параллельно работающих SIMD и MIMD компонент. Эта параллельная архитектура способна достигать больший коэффициент ускорения вычислений по сравнению с одним процессором, чем соответствующая MIMD архитектура может достигать одна.

Наиболее близким аналогом по совокупности существенных признаков к заявляемому изобретению является способ определения структуры гибридной вычислительной системы MIMD-SIMD (см. www.elsevier.com/locate/parco Parallel Computing 29 (2003) 21-36, MIMD-SIMD hybrid system-towards a new low cost parallel system, Leo Chin Sim, Heiko Schroder, Graham Leedham). Способ включает измерение длительности T1 получения решения задачи посредством выполнения программы одним процессором, измерение длительностей TM и TS (в аналоге T1 и TSIMD соответственно) исполнения MIMD и SIMD фрагментов программы одним процессором и одним ускорителем соответственно, определение удельного ускорения ρ (в аналоге X) длительности выполнения SIMD фрагмента программы одним ускорителем по сравнению с длительностью выполнения этого фрагмента одним процессором и на основе полученных данных изменение количества ускорителей, входящих в структуру гибридной вычислительной системы, и оценку значения коэффициента ускорения вычислений, достигаемого этой системой.

Недостатком изложенного способа является неполное использование возможностей гибридной вычислительной системы из-за неизменного количества процессоров в структуре гибридной системы, что исключает для определенного класса вычислительных процессов возможность достижения большего ускорения по сравнению с использованием систем с изменяемым количеством ускорителей.

Задачей, на решение которой направлено заявляемое изобретение, является создание способа, позволяющего создавать структуру гибридной вычислительной системы, в соответствии с особенностями исполняемого вычислительного процесса.

Технический результат заключается в уменьшении длительности вычислительного процесса за счет создания структуры гибридной вычислительной системы, учитывающей особенности конкретного процесса.

Данный технический результат достигается тем, что в заявляемом способе определения структуры гибридной вычислительной системы, содержащей MIMD-компоненту, состоящую по крайней мере из одного процессора, и SIMD-компоненту, состоящую по крайней мере из одного ускорителя, включающем измерение длительности T1 получения решения задачи посредством выполнения программы одним процессором, измерение длительностей TM и TS исполнения MIMD и SIMD фрагментов программы одним процессором и одним ускорителем соответственно, определение удельного ускорения ρ длительности выполнения SIMD фрагмента программы одним ускорителем по сравнению с длительностью выполнения этого фрагмента одним процессором и на основании полученных данных изменение количества ускорителей, входящих в структуру гибридной вычислительной системы, в отличие от прототипа определяют долю φ длительности выполнения MIMD-фрагмента одним процессором и долю 1-φ длительности выполнения SIMD-фрагмента одним процессором относительно длительности выполнения программы одним процессором, сравнивают отношение доли длительности выполнения SIMD фрагмента одним процессором к доле длительности выполнения MIMD фрагмента одним процессором с величиной удельного ускорения длительности выполнения SIMD фрагмента одним ускорителем по сравнению с длительностью выполнения SIMD фрагмента одним процессором, при этом при увеличивают количество процессоров MIMD компоненты, а при увеличивают количество ускорителей SIMD компоненты.

Выполнение всей совокупности признаков заявляемого способа позволяет создать структуру гибридной вычислительной системы, в которой увеличена производительность SIMD компоненты за счет увеличения количества ускорителей, если преобладает длительность SIMD фрагмента, либо увеличена производительность MIMD компоненты за счет увеличения количества процессоров, если преобладает длительность MIMD фрагмента. В результате системой с полученной структурой достигается ускорение вычислений в соответствии с особенностями конкретного вычислительного процесса, которое превышает ускорение, достигаемое системой, структура которой не учитывает этих особенностей.

Изобретение поясняется чертежами: на фиг.1 приведена структура гибридной вычислительной системы; на фиг.2 приведена схема определения доли длительности выполнения MIMD фрагмента и доли SIMD фрагмента и ускорения вычислений на этих фрагментах; на фиг.3 приведена таблица 1 с оценками длительностей вычислений; на фиг.4 в таблице 2 приведены значения коэффициентов ускорения.

Заявляемый способ осуществляется следующим образом.

Гибридная вычислительная система содержит q процессоров 1, образующих MIMD компоненту и выполняющих MIMD фрагмент программы вычислений, и r арифметических ускорителей 2, образующих SIMD компоненту и выполняющих SIMD фрагмент программы вычислений.

В качестве MIMD компоненты могут применяться любые вычислительные системы класса MIMD; процессор MIMD компоненты - отдельный процессорный элемент системы класса MIMD [Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем. С.-Пб, 2004 г., стр.586].

Примерами SIMD-компонент, которые могут быть использованы при реализации способа, являются общеизвестные арифметические ускорители фирм NVIDIA и AMD, процессоры Cell фирмы IBM, ClearSpeed фирмы Intel, а также арифметический ускоритель Systola 1024, используемый в наиболее близком аналоге. Их общей чертой является наличие большого количества «простых» арифметических устройств, имеющих в совокупности существенно большую по сравнению с процессором производительность, достигаемую на специфичных фрагментах программ.

Для осуществления заявляемого способа:

- измеряют системным таймером длительность T1, требуемую для получения решения задачи посредством выполнения всей программы одним процессором,

- измеряют системным таймером длительность TM выполнения MIMD фрагмента одним процессором,

- измеряют системным таймером длительность TS выполнения SIMD фрагмента одним ускорителем,

- из полученных значений определяют долю длительности выполнения MIMD фрагмента и величину удельного ускорения

- сравнивают отношение доли длительности вычислений, выполняемых одним ускорителем, к доле длительности вычислений, выполняемых одним процессором, с величиной удельного ускорения ρ. Если , то в вычислительной системе увеличивают количество процессоров. Если , то увеличивают количество ускорителей.

Работоспособность заявляемого способа подтверждается следующими соотношениями, которые излагаются применительно к распараллеливанию методом умножения для постоянного размера задачи (закон Густафсона [см., например, Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем. С.-Пб, 2004 г., стр.488-490]) и применительно к распараллеливанию методом деления для изменяемого размера задачи (закон Амдаля [см., например, Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем. С.-Пб, 2004 г., стр.486-488]).

Для решения задачи одним процессором требуется интервал длительностью T1.

Полагаем, что процесс решения этой же задачи гибридной вычислительной системой, содержащей один процессор и один ускоритель, занимает интервал длительностью, вычисляемой по формуле

где TM1φ - длительность выполнения MIMD фрагмента одним процессором;

0≤φ≤1 - доля длительности выполнения MIMD фрагмента;

- длительность выполнения SIMD фрагмента одним ускорителем;

ρ>1 - удельное ускорение длительности выполнения SIMD фрагмента, достигаемое применением ускорителя, по сравнению с процессором.

Изложенная декомпозиция вычислительного процесса применительно к распараллеливанию методом деления для q процессоров 1 и одного ускорителя 2 представлена на фиг.2.

Длительность вычислений в режиме умножения системой, содержащей q процессоров 1 и один ускоритель 2, вычисляется по формуле

Если система содержит 1 процессор 1 и r ускорителей 2, то

Аналогично получаем - длительности вычислений в режиме деления системой, содержащей q процессоров 1, один ускоритель 2 и, соответственно, один процессор 1 и r ускорителей 2.

Оценки лительностей вычислений сведены в таблице 1.

Значения параметров ρ и φ определяют для простейшего вычислителя, содержащего один процессор и один ускоритель. Они называются первичными параметрами.

Коэффициент ускорения в режиме умножения системой, содержащей q процессоров 1 и один ускоритель 2, вычисляют по формуле

Подставляя

в формулу (4) находим

Очевидно, при q→∞ имеем максимальное значение .

Чтобы выполнялось (то есть, чтобы применение ускорителей 2 имело смысл по сравнению с простым увеличением количества процессоров 1), необходимо выполнение условия

Это достигается, если q≤ρ.

Для системы, содержащей один процессор и r ускорителей, коэффициент ускорения вычисляют по формуле

Очевидно при r→∞.

Значение , если .

Коэффициент ускорения для системы, содержащей q процессоров и r ускорителей, при q=r вычисляют по формуле

В общем случае Kq,r=Km,1, если q>r, где и Kq,r1,n, если q<r, где ; полагаем, что q и r таковы, что m или n - целые.

Оценим условия, при которых , то есть увеличение количества процессоров 1 целесообразнее увеличения количества ускорителей 2.

Очевидно, для этого необходимо выполнение неравенства

которое выполняется, если .

Если , то увеличение количества процессоров, либо увеличение количества ускорителей одинаково влияют на длительность вычислительного процесса.

Итак, целесообразность наращивания того или иного компонента определяют из первичных свойств вычислительного процесса.

Коэффициент ускорения в режиме деления системой, содержащей q процессоров и один ускоритель, вычисляется по формуле

Получаем

При q→∞ имеем наибольшее значение

При ρ>q выполняется

Для системы, содержащей один процессор и r ускорителей, получаем

При r→∞ имеем

Значение если

Коэффициент ускорения достигаемый системой, содержащей q процессоров и r ускорителей при q=r, вычисляется по формуле

Очевидно, Kq,r=Km,1, если q>r, где и если q<r, где полагаем, что q и r таковы, что m или n - целые.

Оценим параметры процесса, для которого в режиме деления целесообразно увеличивать количество процессоров. Очевидно, должно выполняться условие

Это справедливо, если .

Если , то увеличение количества процессоров, либо увеличение количества ускорителей одинаково влияют на длительность вычислительного процесса.

То есть целесообразность ускорения процесса вычислений в режиме деления увеличением количества процессоров или количества ускорителей зависит, как и в режиме умножения, от значений параметров φ и ρ.

Полученные для режимов умножения и деления коэффициенты ускорения вычислений приведены в таблице 2.

Отметим идентичность этих коэффициентов для обоих режимов при одинаковом количественном и качественном составе вычислителей. Для обоих режимов целесообразно увеличивать количество процессоров, если выполняется .

Пример осуществления способа

Определим структуру гибридной вычислительной системы для решения задачи определения значений потенциала Морзе, используемых в молекулярной динамике.

Длительность вычислений одним процессором для задачи размером 55×55×55 периодов кристаллической решетки была измерена системным таймером, она составила T1=22,96 с. Распараллеливание выполнялось в режиме умножения.

Определяем для этой же задачи системным таймером длительность вычисления гибридной системой, содержащей q=1 процессоров и r=1 ускоритель, она составила T1,1=9,87 с; при этом длительность выполнения MIMD фрагмента одним процессором составила TM=7,07 с, а длительность выполнения SIMD фрагмента одним ускорителем составила TS=2,80 с.

Из измеренных значений определяем

Поскольку , то в структуре гибридной системы для этой программы целесообразно увеличить количество процессоров.

Например, если в этой системе применить q=2 процессоров и r=1 ускоритель, то согласно (2) получаем . Измеренное системным таймером экспериментальное значение Т2,1=13,22 с. Соответствующие теоретическое и экспериментальное значения коэффициентов ускорения и К2,1=3,76.

Если для решения этой задачи применить, следуя прототипу, гибридную систему, содержащую q=1 процессор и r=2 ускорителей, то и .

В рассмотренном примере заявляемый способ позволил создать гибридную вычислительную систему, которая предоставляет возможность решить данную задачу вычисления потенциалов в 1,3 раза быстрее по сравнению с системой, построенной ранее известным способом.

Аналогично, используя (2) и (6) и экспериментальные данные, можно показать, что гибридная система, содержащая q=4 процессора и r=1 ускоритель, позволяет решить указанную задачу в 1,67 раза быстрее по сравнению с системой из q=1 процессора и r=4 ускорителей, построенной ранее известным способом.

Таким образом, заявляемый способ позволяет создавать структуру гибридной вычислительной системы, учитывающую особенности исполняемого вычислительного процесса. Это в свою очередь позволяет уменьшить длительность вычислений и ускорить процесс решения прикладных задач.

Способ определения структуры гибридной вычислительной системы, содержащей MIMD-компоненту, состоящую, по крайней мере, из одного процессора, и SIMD-компоненту, состоящую, по крайней мере, из одного арифметического ускорителя, включающий измерение длительности T1 получения решения задачи посредством выполнения программы одним процессором, измерение длительностей TM и TS исполнения MIMD и SIMD фрагментов программы одним процессором и одним ускорителем соответственно, определение удельного ускорения ρ длительности выполнения SIMD фрагмента программы одним ускорителем по сравнению с длительностью выполнения этого фрагмента одним процессором, и на основании полученных данных изменение количества процессоров, либо количества ускорителей, входящих в структуру гибридной вычислительной системы, отличающийся тем, что определяют долю φ длительности выполнения MIMD фрагмента одним процессором и долю 1-φ длительности выполнения SIMD фрагмента одним процессором относительно длительности выполнения программы одним процессором, сравнивают отношение доли длительности выполнения SIMD фрагмента одним процессором к доле длительности выполнения MIMD фрагмента одним процессором с величиной удельного ускорения ρ длительности выполнения SIMD фрагмента одним ускорителем по сравнению с длительностью выполнения SIMD фрагмента одним процессором, при этом при увеличивают количество процессоров MIMD компоненты, а при увеличивают количество ускорителей SIMD компоненты.



 

Похожие патенты:

Изобретение относится к области создания шаблонных копий автономных ресурсов. .

Изобретение относится к способу и механизму, которые могут применяться, чтобы переместить виртуальную машину, которая владеет ресурсом с первой машины или платформы на вторую машину или платформу.

Изобретение относится к способам и системам интерактивного электронного действия рабочего стола, в частности к использованию Интернет-браузера. .

Изобретение относится к области хранения данных в сети одноранговых узлов. .

Изобретение относится к обмену HTTP-сообщениями между HTTP-клиентом и HTTP-сервером. .

Изобретение относится к области развертывания виртуальных машин на хостах. .

Изобретение относится к способу создания согласованных с приложениями резервных копий виртуальных машин уровня хоста. .

Изобретение относится к области компьютерных средств высокопроизводительной обработки информации для разработки наноразмерных систем. .

Изобретение относится к средствам связи пользователей посредством компьютерных устройств в режиме реального времени

Изобретение относится к способу, системе и архитектуре для обеспечения системы веб-конференций

Изобретение относится к вычислительной технике, может быть использовано для построения высоконадежных отказоустойчивых бортовых управляющих комплексов

Изобретение относится к способам отображения графических объектов

Изобретение относится к способам визуализации текстовой информации на дисплее

Изобретение относится к области обновления виртуальных машин

Изобретение относится к области начальной загрузки операционной системы

Изобретение относится к информационным технологиям, точнее, к системе публикации аутентифицированной контактной информации в публично доступном индексном хранилище

Изобретение относится к области виртуальных машин

Изобретение относится к средствам использования сетевова кэша
Наверх