Тонкодисперсная органическая суспензия углеродных наноструктур для модификации эпоксидных смол и способ ее изготовления

Изобретение относится к области физической и коллоидной химии. Предложена тонкодисперсная органическая суспензия углеродных наноструктур для модификации эпоксидных смол, содержащая диспергированные в полиэтиленполиамине углеродные наноструктуры, включающие 3d-металл, такой как медь, или никель, или кобальт, и его соединения, а также азотсодержащие группы. Содержание наноструктур в суспензии не превышает 5 мг/мл. Для изготовления суспензии порошок наноструктур промывают слабощелочным водным раствором, сушат при температуре 70°С, измельчают, порционно добавляют при смешении в полиэтиленполиамин до достижения содержания наноструктур в суспензии не более 5 мг/мл. Полученную смесь перемешивают до равномерного распределения наноструктур по объему. Технический результат - полученная дисперсия обладает повышенной устойчивостью, позволяющей использовать ее в промышленном масштабе в длительных производственных циклах. 2 н.п. ф-лы, 4 ил.

 

Изобретение относится к области физической и коллоидной химии и заключается в получении тонкодисперсных органических суспензий наноструктур, используемых при модификации полимерных композиций, в частности эпоксидных смол.

Известна органическая суспензия углеродных нанотрубок на основе ацетона для получения эпоксидных нанокомпозитов с повышенными механическими характеристиками (заявка US №20090035570, опубл. 05.02.2009 г.).

Суспензию углеродных нанотрубок на основе ацетона получали при помощи микроструйной машины, путем комплексного воздействия силы сдвига и перемешивания, а также воздействием ультразвука.

Введение ацетона в эпоксидную смолу может привести к потере прочности отверждаемого продукта. В некоторых материалах, особенно пластифицированных, наличие ацетона может привести к изменению состава композиции. Удаление ацетона из состава композиции - обязательная операция, усложняющая технологический процесс и производственный цикл в целом, что, в конечном счете, ведет к значительному росту себестоимости конечного продукта. Вышеперечисленные недостатки ацетона делают его использование в качестве дисперсионной среды нерентабельным.

Наиболее близким техническим решением является органическая суспензия для модификации эпоксидной смолы («Оптимизация свойств эпоксидных композитов, модифицированных наночастицами». Т.А.Низина, П.А.Кисляков. Строительные материалы, 2009, №9, стр.78-80). Известная суспензия содержит фуллероидный многослойный синтетический наномодификатор астрален NTC. В качестве дисперсионной среды использован полиэтиленполиамин, являющийся отвердителем эпоксидных смол.

Для изготовления известной суспензии в полиэтиленполиамин в количестве 0,0075-0,03% вводили фуллероидный многослойный синтетический наномодификатор астрален NTC. Смесь диспергировали ультразвуком с интенсивностью 22 кВт/м2 частотой 18 кГц, при мощности 40 Вт. Полученная суспензия сохраняла устойчивость в течение нескольких дней.

Недостатком известной суспензии является малая устойчивость, что может привести к быстрой коагуляции дисперсной фазы и уменьшению ее активности. Низкая устойчивость ограничивает использование суспензии в промышленном масштабе в длительных производственных циклах.

Целью изобретения является повышение устойчивости тонкодисперсной органической суспензии углеродных наноструктур на основе полиэтиленполиамина.

Для достижения цели изобретения тонкодисперсная органическая суспензия для модификации эпоксидных смол, содержащая полиэтиленполиамин, содержит углеродные наноструктуры, включающие 3d-металл, такой как медь, или никель, или кобальт, и его соединения, а также азотсодержащие группы, при содержании наноструктур в суспензии не более 5 мг/мл.

В способе изготовления тонкодисперсной органической суспензии углеродных наноструктур для модификации эпоксидных смол взаимодействием углеродных наноструктур и полиэтиленполиамина используют порошок углеродных наноструктур, включающих 3d-металл, такой как медь, или никель, или кобальт, и его соединения, а также азотсодержащие группы. Порошок углеродных наноструктур промывают слабощелочным водным раствором, сушат при температуре не более 70°С, измельчают и порционно добавляют при смешении в полиэтиленполиамин до достижения содержания наноструктур в суспензии не более 5 мг/мл. Полученную смесь перемешивают до равномерного распределения наноструктур по объему.

Диспергирование в полиэтиленполиамине углеродных наноструктур, полученных смешением хлорида меди, или никеля, или кобальта с водным раствором поливинилового спирта и полиэтиленполиамина при мольных соотношениях 1:(5-1) и последующим нагреванием до температуры, не превышающей 400°С, позволяет получить тонкодисперсную органическую суспензию, устойчивую в течение нескольких недель.

Максимальное содержание наноструктур в составе суспензии ограничивается агрегативной устойчивостью суспензии. При содержании наноструктур в составе суспензии больше чем 5 мг/мл происходит коагуляция дисперсной фазы с последующим осаждением и снижением ее активности. Суспензии, содержащие меньшее количество наноструктур, остаются устойчивыми.

Наличие ионов хлора в составе углеродных металлсодержащих наноструктур может оказать негативное влияние на электрические свойства отвержденной эпоксидной композиции. Для вымывания ионов хлора перед диспергированием углеродные наноструктуры промывают слабощелочным водным раствором с контролем хлорного показателя рСl.

При температуре сушки более 70°С происходит частичное спекание углеродных металлсодержащих наноструктур.

Изобретение поясняется графическими материалами.

Фиг.1. Фотография суспензии углеродных наноструктур, содержащей медь, при просвечивании массы через 15 дней.

Фиг.2. Фотография суспензии углеродных наноструктур, содержащей никель, при просвечивании массы через 15 дней.

Фиг.3. Фотография суспензии углеродных наноструктур, содержащей кобальт, при просвечивании массы через 15 дней.

Фиг.4. Зависимость оптической плотности суспензий наноструктур, содержащих медь, или никель, или кобальт, от времени.

При изготовлении суспензии использовали углеродные наноструктуры, включающие медь, или никель, или кобальт, полученные смешением хлорида меди, или никеля, или кобальта с водным раствором поливинилового спирта и полиэтиленполиамина при мольных соотношениях 1:(5-1) и последующим нагреванием до температуры, не превышающей 400°С (патент RU 2323876, опубл. 10.05.2008 г.; Активность наноструктур и проявление ее в нанореакторах полимерных матриц и в активных средах. Кодолов В.И., Хохряков Н.В., Тринеева В.В., Благодатских И.И., Химическая физика и мезоскопия, том 10, №4, стр.456, 457, 2008 г.). Наноструктуры содержат примеси, предположительно оксиды металлов и группы =N+= (О процессах формирования углеродметаллсодержащих наноструктур в нанореакторах гелей на основе поливинилового спирта и полиэтиленполиамина в присутствии солей d-металлов. В.И.Кодолов и другие, сборник докладов Международной конференции «Техническая химия. От теории к практике», Пермь, 2008, стр.62, 63). Из данных термогравиметрии и ИК-спектроскопии количество примесей незначительно и составляет (3-5)%, что в суспензии будет составлять 10-4%.

Контроль устойчивости суспензии осуществлялся по оптической плотности через определенные промежутки времени.

Пример 1. Тонкодисперсную органическую суспензию получали диспергированием предварительно промытых в слабощелочном водном растворе, высушенных при температуре 70°С и измельченных порошков углеродных наноструктур, включающих медь, в полиэтиленполиамине до содержания нанопродукта 5 мг/мл. Полученную смесь перемешивали до равномерного распределения наноструктур по объему. Тонкодисперсная органическая суспензия (Фиг.1) оставалась устойчивой в течение 35 дней (Фиг.4,а).

Пример 2. Тонкодисперсную органическую суспензию получали диспергированием предварительно промытых в слабощелочном водном растворе, высушенных при температуре 70°С и измельченных порошков углеродных наноструктур, включающих никель, в полиэтиленполиамине до содержания нанопродукта 5 мг/мл. Полученную смесь перемешивали до равномерного распределения наноструктур по объему. Тонкодисперсная органическая суспензия (Фиг.2) оставалась устойчивой в течение 25 дней (Фиг.4,б).

Пример 3. Тонкодисперсную органическую суспензию получали диспергированием предварительно промытых в слабощелочном водном растворе, высушенных при температуре 70°С и измельченных порошков углеродных наноструктур, включающих кобальт, в полиэтиленполиамине до содержания нанопродукта 5 мг/мл. Полученную смесь перемешивали до равномерного распределения наноструктур по объему. Тонкодисперсная органическая суспензия (Фиг.3) оставалась устойчивой в течение 20 дней (Фиг.4,в).

Пример 4. Тонкодисперсную органическую суспензию получали диспергированием предварительно промытых в слабощелочном водном растворе, высушенных при температуре 70°С и измельченных порошков углеродных наноструктур, включающих медь, в полиэтиленполиамине до содержания нанопродукта 2,5 мг/мл. Полученную смесь перемешивали до равномерного распределения наноструктур по объему. Тонкодисперсная органическая суспензия оставалась устойчивой в течение 35 дней (Фиг.4,г).

Заявленная суспензия, устойчивая в течение нескольких недель, может применяться в промышленном масштабе, длительных производственных циклах для улучшения свойств клеев, компаундов, герметиков, покрытий и красок на основе эпоксидных смол.

1. Тонкодисперсная органическая суспензия углеродных наноструктур для модификации эпоксидных смол, содержащая углеродные наноструктуры и полиэтиленполиамин, отличающаяся тем, что содержит углеродные наноструктуры, включающие 3d-металл, такой как медь, или никель, или кобальт, и его соединения, а также азотсодержащие группы, при содержании наноструктур в суспензии не более 5 мг/мл.

2. Способ изготовления тонкодисперсной органической суспензии углеродных наноструктур для модификации эпоксидных смол взаимодействием углеродных наноструктур и полиэтиленполиамина, отличающийся тем, что порошок углеродных наноструктур, включающих 3d-металл, такой как медь, или никель, или кобальт, и его соединения, азотсодержащие группы, промывают слабощелочным водным раствором, сушат при температуре не более 70°С, измельчают, порционно добавляют при смешении в полиэтиленполиамин до достижения содержания наноструктур в суспензии не более 5 мг/мл, полученную смесь перемешивают до равномерного распределения наноструктур по объему.



 

Похожие патенты:

Изобретение относится к области обработки (геммологического облагораживания) природных и синтетических алмазов с конечной целью улучшения их декоративных свойств.

Изобретение относится к порошковой металлургии и может быть использовано для получения нанопорошков систем элемент-углерод, т.е. .

Изобретение относится к области химии. .
Изобретение относится к выращиванию и обработке монокристаллов синтетического карбида кремния - муассанита, который может быть использован для электронной промышленности, ювелирного производства, а также в качестве стекла или корпуса для часов.

Изобретение относится к нанотехнологии. .

Изобретение относится к производству огнестойких синтетических волокон, в частности к волокнам на основе окисленного полиакрилонитрила. .

Изобретение относится к химической промышленности и нанотехнологии. .
Изобретение относится к области производства сорбентов, применяемых в поглощающих системах средств индивидуальной защиты органов дыхания. .

Изобретение относится к области медицины, в частности фармакологии, и может быть использовано для повышения антигипоксической активности 3,5-диамино-1,2,4-тиадиазола.

Изобретение относится к углеперерабатывающей промышленности, а именно к области получения активных углей из бурого угля. .

Изобретение относится к медицине, а именно к нейрохирургии. .

Изобретение относится к области электротехники и может быть использовано в качестве сверхпроводящего материала при изготовлении сверхпроводящих магнитных систем различного назначения для генерации постоянных магнитных полей, например, в термоядерных реакторах для удержания плазмы, ускорителях элементарных частиц, накопителях энергии и других устройствах.

Изобретение относится к области электротехники и может быть использовано в качестве сверхпроводящего материала при изготовлении сверхпроводящих магнитных систем различного назначения для генерации постоянных магнитных полей, например, в термоядерных реакторах для удержания плазмы, ускорителях элементарных частиц, накопителях энергии и других устройствах.

Изобретение относится к области солнечной энергетики. .

Изобретение относится к области конструкции и технологии изготовления оптоэлектронных приборов, а именно к конструкции фотоэлектрических преобразователей. .

Изобретение относится к устройствам энергонезависимой электрически перепрограммируемой памяти, реализуемым с помощью методов микро- и нанотехнологии. .

Изобретение относится к способам получения нанокомпозитов на основе диоксида титана с повышенной фотокаталитической активностью и расширенной спектральной восприимчивостью и может быть использовано для фотокаталитической очистки воды и воздуха от органических соединений и патогенной флоры, преобразования энергии солнечного света в электрическую энергию, фотокаталитического разложения воды, а также в качестве электродного материала литий-ионных аккумуляторов.

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления и гравиметрии. .

Изобретение относится к улучшенным композициям нанокомпозита и способам их получения и применения. .

Изобретение относится к области защиты банкнот, ценных бумаг и документов с нанесенными метками подлинности, содержащими нанокристаллы алмазов с центрами азот-вакансия, и может быть использовано для проверки подлинности различных объектов автоматизированного контроля.

Изобретение относится к модифицированному гуммиарабику, широко используемому в качестве эмульгатора, загустителя, кроющего агента, связующего и материала для капсул.

Изобретение относится к области физической и коллоидной химии

Наверх