Тензорезисторный датчик силы



Тензорезисторный датчик силы
Тензорезисторный датчик силы
Тензорезисторный датчик силы
Тензорезисторный датчик силы

 


Владельцы патента RU 2437070:

Общество с ограниченной ответственностью "Научно-производственное предприятие "Тензоприбор" (RU)

Изобретение относится к силоизмерительной технике и может быть использовано при изготовлении весоизмерительных приборов. Техническим результатом является упрощение конструкции, снижение трудоемкости изготовления и повышение чувствительности устройства. Тензометрический датчик силы содержит корпус в виде параллелограмма, образованного верхней и нижней гранями и двумя сквозными поперечными отверстиями с перемычкой - чувствительным элементом между ними, и тензорезисторы. Тензорезисторы размещены в зонах максимальных деформаций на прилегающих поверхностях отверстий выше и ниже нейтральной оси корпуса. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к силоизмерительной технике и может быть использовано при изготовлении весоизмерительных приборов.

Известен датчик силы, содержащий жесткие силопередающие элементы, соединенные упругой частью устройства в виде двух балочек с утонениями на концах, образующими упругие шарниры и измерительной перемычкой с тензорезисторами, при этом средняя часть перемычки выполнена в виде кольцеобразного упругого элемента, размещенного в плоскости действия силы с внутренней цилиндрической поверхностью, для размещения тензорезисторов. Стенки кольцеобразного упругого элемента в зонах размещения тензорезисторов выполнены переменной толщины, которые образованы пересекающимися отверстиями с различными координатами (см. описание к патенту №2308010,6, МПК G01L 1/22).

Недостатком аналога является сложность изготовления.

Известен датчик силы, содержащий корпус в виде параллелограмма с полостью в боковой стенке, в которой размещена упругая балка с пьезопластинами и генератор. Поперечная полость корпуса выполнена из центрального и двух пересекающих его симметрично расположенных сквозных боковых отверстий, диаметр которых больше диаметра центрального отверстия. В центральном отверстии вертикально расположена упругая балка, которая имеет сегментальные выемки, образованные отверстиями. Пьезоэлементы расположены на балке под углом 45 градусов к продольной оси корпуса. Точка пересечения их осей совпадает с центром отверстия. Боковые отверстия с верхней и нижней гранями корпуса образуют упругие шарниры (см. описание к патенту 2130593,6, МПК G01L 1/16, 1/22).

Этот датчик принят за прототип по наибольшему числу существенных признаков.

Недостатками конструкции прототипа является: во-первых, сложность изготовления из-за необходимости выполнения трех отверстий в боковой стенке и шлифования поверхности под наклейку тензорезисторов, а эта поверхность в прототипе - плоское дно глухого центрального отверстия, следовательно, необходимо торцевое шлифование, причем - с двух сторон, следовательно, необходима переустановка детали с поворотом; во-вторых, низкая чувствительность датчика из-за того, что измерение главных напряжений в прототипе производится на нейтральной оси под углом 45 градусов к ней, и они равны максимальным касательным напряжениям в этом сечении, допустимый уровень которых в 1,67 раза меньше допустимого уровня нормальных напряжений, вследствие чего измеряемые деформации в прототипе занижены в 1,67 раз.

Задачей настоящего изобретения является упрощение конструкции, снижение трудоемкости изготовления и повышение чувствительности датчика силы.

Для решения поставленной задачи в тензометрическом датчике силы, содержащем корпус в виде параллелограмма, образованного верхней и нижней гранями и двумя сквозными поперечными отверстиями с упругой перемычкой - чувствительным элементом между ними, тензорезисторы размещены в зонах максимальных деформаций на прилегающих поверхностях отверстий выше и ниже нейтральной оси корпуса датчика. Расстояние между отверстиями, являющееся толщиной перемычки, - чувствительного элемента рассчитывается таким образом, чтобы уровень измеряемых деформаций, возникающих при нагружении датчика, соответствовал техническим характеристикам тензорезисторов. С целью увеличения зон равномерного распределения напряжений (деформаций) в местах наклейки тензорезисторов в боковых стенках перемычки - чувствительного элемента выше и ниже нейтральной оси корпуса датчика выполнены пазы.

Упрощение конструкции и снижение трудоемкости изготовления достигается за счет того, что в предлагаемом решении боковая полость выполнена только двумя сквозными поперечными отверстиями - исключено третье центральное глухое отверстие. Кроме этого снижение трудоемкости достигается за счет того, что требуемые измерительные деформации получены на прилегающих поверхностях двух сквозных поперечных отверстий, выполненных в виде цилиндров. А внутреннее цилиндрическое шлифование существенно технологичнее торцевого шлифования, как в прототипе, и не требует переустановки детали.

Увеличение чувствительности датчика достигается за счет того, что тензорезисторы измеряют деформации при максимальных нормальных изгибных напряжениях, допустимый уровень которых в 1,67 раза выше допустимого уровня напряжений при определении максимальных касательных напряжений от сдвига, как в прототипе. Вышесказанное подтверждается формулой:

σ1=τmax ≤ [τ]=0,6[σ]=0,6σв/3

σmax ≤ [σ]=σв/3 таким образом, σ1<σmax в 1,67 раза, где

σ1 - главное напряжение;

[σ] - допустимый уровень нормальных напряжений;

τmax - максимальное касательное напряжение;

[τ] - допустимый уровень касательных напряжений;

σв - напряжение, при котором происходит разрушение образца.

Сущность изобретения поясняется следующими чертежами:

на фиг.1 изображен датчик силы, содержащий корпус 1 в виде параллелограмма, силопередающие элементы 2 и 3, соединенные упругой параллелограммной системой, образованной в корпусе 1 двумя сквозными поперечными отверстиями 4 и гранями, верхней 5 и нижней 6. Упругая перемычка между отверстиями является чувствительным элементом 7. На прилегающие цилиндрические поверхности отверстий, образующие чувствительный элемент 7 выше и ниже нейтральной оси корпуса 8, - в верхних деформируемых зонах наклеены тензорезисторы 9, а ниже - в нижних аналогичных зонах - тензорезисторы 10. Для удлинения зон с равномерным распределением деформаций в боковых стенках чувствительного элемента 7 выполнены пазы 11 и 12, которые «утоняют» чувствительный элемент 7 в его малонапряженных зонах для поднятия в них напряжений (уровней деформаций);

на фиг.2 - схема соединения тензорезисторов 9 и 10;

на фиг.3 - распределение напряжений в расчетной модели датчика, полученное методом конечных элементов с помощью специальной программы;

на фиг.4 - фрагмент фиг.3 с указанием величин напряжений в узлах расчетной модели датчика, расположенных в зоне наклейки одного из тензорезисторов.

Датчик работает следующим образом.

При действии силы Р силопередающий элемент 1 перемещается в направлении силы и происходит поворот перемычки - чувствительного элемента 7. В результате чего на прилегающих поверхностях сквозных отверстий 4 выше и ниже нейтральной оси 8 корпуса 1 возникают деформации сжатия и растяжения, которые соответственно изменяют сопротивления тензорезисторов. Разнополярные деформации позволяют соединить тензорезисторы 9 и 10 по схеме полного дифференциального моста (фиг.2), отличающегося высокой чувствительностью преобразования деформаций в электрическое напряжение.

Благодаря тому, что передача усилий на чувствительный элемент 7 происходит в зоне нейтральной оси 8 корпуса 1 устройства, зависимость от внешних паразитных моментов минимизирована. Кроме того, тензорезисторы R1 и R2, размещенные в верхней части, и тензорезисторы R3 и R4, расположенные в нижней части, включены в одни и те же плечи моста, что дополнительно компенсирует остаточное влияние деформаций от внешнего момента на результат измерений.

За счет того, что тензорезисторы размещены в зонах с равномерным распределением деформаций по длине измерительной решетки, достигается максимальный коэффициент преобразования механических деформаций в изменение сопротивлений.

Применение предлагаемого датчика в производстве позволит обеспечить высокую точность измерения усилий. На предлагаемый датчик разработана конструкторская документация, изготовлены и успешно испытаны опытные образцы на номиналы измеряемых усилий от 150 кг до 7000 кг. Общая погрешность измерения не превышает 0,02%, нелинейность - не более 0,01%.

1. Тензометрический датчик силы, содержащий корпус в виде параллелограмма, образованного верхней и нижней гранями и двумя сквозными поперечными отверстиями с перемычкой - чувствительным элементом между ними, и тензорезисторы, отличающийся тем, что тензорезисторы размещены в зонах максимальных деформаций на прилегающих поверхностях отверстий выше и ниже нейтральной оси корпуса.

2. Датчик по п.1, отличающийся тем, что чувствительный элемент выполнен с пазами в боковых стенках выше и ниже нейтральной оси корпуса.



 

Похожие патенты:

Изобретение относится к области измерительной техники, в частности к тензорезисторным преобразователям силы, и может быть использовано в разработке и изготовлении датчиков для измерения диапазонов малых давлений.

Изобретение относится к области машиностроения и транспорта, а именно к механосборочному производству, в частности к сборке с гарантированным натягом деталей типа вал-втулка тепловым способом, и предназначено для оценки прочности сопряжения внутренних колец двух рядом стоящих буксовых роликовых подшипников, напрессованных на шейку оси колесной пары.

Изобретение относится к измерительной технике и может быть использовано в устройствах для защиты грузоподъемных машин и механизмов от перегрузок, в высокоточных тензометрических весах, а также в качестве преобразователя механических величин (давления, перемещения, деформации, усилия) в электрический сигнал в различных отраслях промышленности.

Изобретение относится к медицинской технике, а именно к устройствам для измерения усилий и/или моментов. .

Изобретение относится к области измерительной техники и может быть использовано для взвешивания, например, проката. .

Изобретение относится к силоизмерительной технике и может быть использовано для измерения усилий при контроле технологических процессов или при поверке рабочих датчиков силы.

Изобретение относится к области испытаний материалов на трещиностойкость при действии структурных и температурных усадочных напряжений и старения. .

Изобретение относится к силоизмерительной технике и может быть использовано при изготовлении весоизмерительных приборов. .

Изобретение относится к измерительной технике и может быть использовано для измерения усилий сжатия между двумя поверхностями, например, при измерениях силы прижатия тормозных колодок к суппорту в процессе торможения автомобиля.

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия колеса с рельсом

Изобретение относится к контрольно-измерительной технике, в частности, для измерения деформаций в различных конструкциях посредством поляризационно-оптических преобразователей и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре

Изобретение относится к области измерительной техники, а именно к многоканальным измерительным устройствам для измерения сил и моментов, действующих на модель летательных аппаратов в аэродинамической трубе

Изобретение относится к области машиностроения и транспорта

Изобретение относится к области измерительной техники и может быть использовано для измерения усилий в подъемных устройствах

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера

Изобретение может быть использовано для измерения малых давлений с повышенной чувствительностью и точностью. Тензорезисторный преобразователь силы содержит упругий элемент, выполненный за одно целое с опорном кольцом. Упругий элемент выполнен с четырьмя сквозными отверстиями с поперечными прорезями в боковой грани. На плоской поверхности упругого элемента над сквозными отверстиями размещены тензорезисторы. Ширина плоской поверхности упругого элемента в местах расположения тензорезисторов выполнена переменной и определяется соответствующим математическим выражением. где b - максимальная ширина плоской поверхности упругого элемента; hmin - минимальная толщина поверхности упругого элемента над сквозным отверстием; l - длина рабочей части упругого элемента; ХT - текущая координата тензорезистора; r - радиус сквозного отверстия. Техническим результатом является увеличение чувствительности тензорезисторного преобразователя силы и повышение точности измерения малых давлений. 3 ил.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, нагруженных осевой силой. Способ заключается в следующем. Спаренные тяги фиксируют относительно основания технологическими штырями, после чего натягивают одну тягу с контролем усилия, затем без контроля усилия вторую тягу до полного освобождения технологических штырей от зажима. Для обеспечения равномерной передачи управляющего момента необходимо, чтобы оси, проходящие через оси вращения и тяги рычагов, были перпендикулярны плоскости симметрии системы. Технический результат заключается в обеспечении заданного усилия натяжения тяг. 4 ил.

Изобретение относится к измерительной технике, в частности к устройству многокомпонентных тензометрических динамометров с внутренним каналом, и может быть использовано в различных областях техники (например, в робототехнике, экспериментальной гидро- и аэродинамике). Задачей, на решение которой направлено изобретение, является повышение потребительских качеств динамометра за счет обеспечения максимально возможного проходного сечения его внутреннего канала, используемого для размещения коммуникаций. Это достигается тем, что в динамометре, содержащем симметричные относительно продольной оси два жестких кольцевых основания, две взаимно перпендикулярные пары продольных упругих балок с поперечными подрезами на внутренних поверхностях, промежуточное основание в виде двух дополнительных жестких колец, которые соединены между собой посредством четырех продольных упругих пластин, крестообразно расположенных в поперечном сечении вдоль боковых граней упругих балок, и выполнены с лысками напротив соответствующих пар упругих балок, связанных с кольцами промежуточного основания со стороны, противоположной соединенному с соответствующей парой упругих балок кольцевому основанию, и тензопреобразователи, размещенные на гранях упругих балок и упругих пластин, жесткие кольца промежуточного основания размещены напротив поперечных подрезов противолежащих продольных упругих балок, а на поверхности лысок этих колец выполнены поперечные выступы с профилем поверхности по форме подрезов соответствующих продольных упругих балок, отделенные от поверхности указанных подрезов зазором, величина которого выполнена превышающей величину деформации продольных упругих балок и пластин при максимальной измеряемой нагрузке. 10 ил.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, и может быть использовано в любой отрасли народного хозяйства, и, в частности, в ракетной технике. Устройство работает следующим образом. В двуплечих рычагах делаются отверстия таким образом, чтобы центры отверстий и оси вращения лежали в одной плоскости. Аналогично выполняются ответные отверстия в основании. Систему тяг в «расслабленном» состоянии устанавливают на основание. В совмещенные отверстия на двуплечих рычагах вставляют технологические штыри. После чего одну из тяг при помощи талрепа натягивают до необходимого состояния. Натяжение одной тяги приводит к перекосу системы и зажатию одного из технологических штырей в отверстии. Далее при помощи талрепа начинаем натягивать вторую тягу до полного освобождения штыря от зажима («перекоса»), образовавшегося при натяжении первой тяги. Освобождение другого технологического штыря из отверстия будет свидетельствовать о том, что отверстия в двуплечих рычагах полностью совместились. Далее, на полностью собранную тягу устанавливают предварительно оттарированный съемный элемент с закрепленными на нем тензодатчиками, предварительно закрепляя его с помощью зажимов. Вращая талреп, поднатягивают тягу до момента появления сигналов с тензодатчиков, выбирают провис тяги. После чего полностью ослабляют зажимы и вновь закрепляют съемный элемент уже с усилием, предотвращающим проскальзывание поджатых друг к другу тяги и съемного элемента. С этого момента съемный элемент и тяга работают на растяжение совместно как единый элемент тяги. Таким образом, изменяя площадь поперечного сечения съемного элемента, не меняя при этом геометрических размеров самой тяги, можно изменить степень деформации и измеряемое усилие, а также равномерно распределить управляющий момент на тяге, и тем самым максимально совместить диапазон измерений с рабочим диапазоном используемых тензодатчиков, что автоматически повышает точность измерения и снижает трудоемкость изготовления и контроля. 6 ил.
Наверх