Система вентиляции электрической машины (варианты)



Система вентиляции электрической машины (варианты)
Система вентиляции электрической машины (варианты)
Система вентиляции электрической машины (варианты)
Система вентиляции электрической машины (варианты)
Система вентиляции электрической машины (варианты)
Система вентиляции электрической машины (варианты)

 


Владельцы патента RU 2437195:

Закрытое акционерное общество "Нефтьстальконструкция" (RU)

Изобретение относится к области электромашиностроения и предназначено для использования в системе вентиляции крупной электрической машины, в частности турбогенератора большой мощности с воздушным охлаждением статора и ротора. Технический результат, достигаемый при использовании настоящего изобретения, состоит в обеспечении эффективного охлаждения всех активных частей электрической машины при одновременном обеспечении возможности увеличения ее единичной мощности и сохранения простоты конструкции. Электрическая машина содержит ротор, статор с подпазовыми и радиальными вентиляционными каналами. По исполнению дистанционных распорок радиальные каналы подразделены на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами. По второму варианту закрытые со стороны зазора радиальные вентиляционные каналы чередуются в аксиальном направлении с открытыми в зазор радиальными вентиляционными каналами, подразделенными по исполнению дистанционных распорок на два типа. 2 н. и 8 з.п. ф-лы, 6 ил.

 

Заявляемая группа технических решений относится к области электромашиностроения и предназначена для использования в системе вентиляции крупной электрической машины, в частности турбогенератора большой мощности с воздушным охлаждением статора и ротора.

Известна система вентиляции электрической машины [1], сердечник статора которой выполнен с открытыми в зазор вентиляционными каналами. Кольцевыми перегородками корпуса со стороны спинки статора образованы чередующиеся кольцевые зоны повышенного и пониженного давления. В роторе выполнены вентиляционные каналы, открытые в зазор. На наружной поверхности ротора установлены разделительные элементы, образующие кольцевые чередующиеся зоны, сообщающиеся с зонами повышенного и пониженного давления. С этими зонами сообщаются вентиляционные каналы ротора. Преимуществом данной системы вентиляции является то, что напор вентиляторов частично используется для организации движения охлаждающего потока в вентиляционных каналах ротора. Однако она отличается сложностью конструкции из-за большого количества коробов и перепускных труб и является малоэффективной при использовании воздушного охлаждения, т.к. на торцевые зоны электрической машины, которые испытывают наибольший нагрев, не направляется интенсивный поток охлаждающего газа.

Известна многоструйная система вентиляции электрической машины с продольным секционированием статора [2], в которой выходящий в зазор из подпазовых каналов и радиальных отверстий ротора охлаждающий поток отделен от зоны нагнетания статора перегородкой, смонтированной на сердечнике статора. При этом соединение зоны нагнетания статора с зоной разрежения выполнено через аксиальные отверстия в перегородке. Система исключает взаимное торможение потоков, выходящих из ротора и статора, но она малоэффективна в части охлаждения торцевых зон активных частей статора электрической машины.

За прототип для вариантов заявляемого решения принята система вентиляции электрической машины [3], содержащая сердечник статора с обмоткой и ротор. Охлаждающий поток циркулирует через спинку и зубцовую зону статора по радиальным каналам сердечника, образованным прямыми и U-образными дистанционными распорками, и по подпазовым каналам направляется с большой скоростью в торцевые части сердечника. Данное решение отличается простотой конструкции и обеспечивает эффективное охлаждение активных частей статора и, особенно, наиболее нагретых торцевых зон, но перекрытие зазора, исключающее связь с ротором, не позволяет использовать напорное действие вентиляторов для циркуляции воздуха в роторе. Этот недостаток ограничивает применение данной системы вентиляции для машин большой мощности с длинным ротором, в которых сечения отверстий (например, подпазовых каналов), выполненных в торцах бочки ротора, будет недостаточно для эффективного охлаждения ротора.

Целью заявляемой группы решений является обеспечение эффективного охлаждения всех активных частей электрической машины с возможностью увеличения ее единичной мощности и сохранения простоты конструкции.

Поставленная цель по первому варианту заявляемого решения достигается за счет того, что в известной системе вентиляции электрической машины, содержащей ротор, зазор, статор с подпазовыми вентиляционными каналами и образованными с помощью дистанционных распорок радиальными вентиляционными каналами, открытыми в пространство между корпусом и спинкой статора, упомянутые радиальные вентиляционные каналы открыты в зазор и по исполнению дистанционных распорок подразделены на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами.

Поставленная цель по второму варианту решения достигается за счет того, что в известной системе вентиляции электрической машины, содержащей ротор, статор с образованными с помощью дистанционных распорок радиальными вентиляционными каналами, открытыми в пространство между корпусом и спинкой статора и закрытыми со стороны зазора, с распорками в зубцовой части статора, имеющими U-образную форму и охватывающими подпазовые вентиляционные каналы, упомянутые закрытые со стороны зазора радиальные вентиляционные каналы чередуются в аксиальном направлении с дополнительно выполненными в статоре открытыми в зазор и в пространство между корпусом и спинкой статора радиальными вентиляционными каналами, подразделенными по исполнению дистанционных распорок на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами.

Для обоих вариантов решения кольцевые разделительные перегородки скреплены с ротором или статором, а в дистанционных распорках, перекрывающих вход охлаждающего потока в подпазовые вентиляционные каналы со стороны пространства между корпусом и спинкой статора, могут быть выполнены перепускные отверстия или в спинке статора выполнены аксиальные отверстия.

Новизна заявляемой системы вентиляции электрической машины, по сравнению с прототипом, для обоих вариантов решения заключается в организации аксиального чередования вентиляционных зон повышенного и пониженного давления внутри сердечника статора с подключением в схему вентиляции аксиальных каналов статора и каналов ротора, сообщающихся с указанными вентиляционными зонами, и дополнительно для второго варианта - с чередованием закрытых со стороны зазора и открытых в зазор радиальных вентиляционных каналов.

Из уровня техники не выявлен признак, касающийся установки дистанционных распорок, в одних зонах перекрывающих вход охлаждающего потока в подпазовые вентиляционные каналы по их периметру, а в других зонах - со стороны пространства между корпусом и спинкой статора при открытых в зазор радиальных вентиляционных каналах статора. Также не выявлено сочетание известных из прототипа закрытых со стороны зазора радиальных вентиляционных каналов с дополнительно выполненными открытыми в зазор радиальными вентиляционными каналами. Признак, касающийся перепускных отверстий в дистанционных распорках, перекрывающих подпазовые каналы со стороны спинки, из уровня техники не выявлен. Это позволяет сделать вывод о соответствии предлагаемого в качестве изобретения технического решения условию патентоспособности по изобретательскому уровню. Известные из уровня техники признаки «кольцевая разделительная перегородка в зазоре» и «аксиальное отверстие в спинке статора» в сочетании с новыми признаками повышают эффективность охлаждения, соответственно, ротора и спинки статора.

Изобретение поясняется чертежами, где на фигуре 1 представлен общий вид электрической машины, на фигурах 2 и 3 - поперечные сечения по соседним вентиляционным зонам, на фигуре 4 - вариант фигуры 3 с дистанционными распорками, на фигуре 5 - фрагмент варианта общего вида электрической машины, на фигуре 6 - поперечное сечение фигуры 5.

Система вентиляции электрической машины, например турбогенератора с воздушным охлаждением, состоит из статора с сердечником 1, с обмоткой 2, с нажимной плитой 3 и ротора 4 с обмоткой 5 (см. фиг.1). Сердечник 1 статора содержит радиальные вентиляционные каналы 6, открытые в пространство 7 между корпусом 8 и сердечником 1, а также в зазор 9, и подпазовые вентиляционные каналы 10. В аксиальном направлении сердечник 1 статора подразделен на чередующиеся вентиляционные зоны 11 и 12. В вентиляционных зонах 11 подпазовые каналы 10 охвачены по периметру дистанционными распорками 13. В вентиляционных зонах 12 установлены дистанционные распорки 14, перекрывающие подачу воздуха по радиальным вентиляционным каналам 6 в подпазовые каналы 10 со стороны пространства 7. В роторе 4 выполнены вентиляционные каналы 15, каждый из которых образован радиальными щелями в обмотке 5 ротора 4 и подпазовыми щелями в бочке ротора 4. Таким образом, каждый вентиляционный канал 15 открыт в соседние вентиляционные зоны 11 и 12. В зазоре 9 на границах вентиляционных зон 11 и 12 установлены кольцевые разделительные перегородки 16, которые могут быть закреплены как на роторе 4 (показано на фиг.1), так и на расточке сердечника 1 статора. Сечение по вентиляционной зоне 11 с распорками 13 показано на фигуре 2. Сечение по вентиляционной зоне 12 с распорками 14 показано на фигуре 3. В распорках 14 могут быть выполнены перепускные отверстия 17 для локального перепуска воздуха от спинки сердечника 1 в подпазовые каналы 10 статора. В вентиляционной зоне 12 могут быть размещены дистанционные распорки 18 (см. фиг.4), не перекрывающие вход в подпазовые каналы 10 в зоне 12. Как вариант локальной вентиляции спинки сердечника 1 - в спинке по всей длине статора могут быть выполнены аксиальные каналы 19. В вариантном решении системы вентиляции (см. фиг.5) закрытые со стороны зазора тангенциальными распорками 20 радиальные вентиляционные каналы 21 размещены с чередованием с открытыми вентиляционными каналами 6. В каналах 21 подпазовые вентиляционные каналы 10 охвачены U-образными дистанционными распорками 22, боковые образующие 23 (см. фиг.6) которых обращены в сторону зазора. Оптимальным размещением закрытых со стороны зазора радиальных вентиляционных каналов 21 является чередование их с каждым радиальным вентиляционным каналом 6 в каждой вентиляционной зоне 11 и 12.

Вентиляция электрической машины по первому варианту решения осуществляется следующим образом. Охлаждающий воздух (на чертежах движение воздуха обозначено стрелками) поступает из пространства 7 в радиальные каналы 6. В вентиляционных зонах 11 он проходит через спинку сердечника 1 статора, затем, минуя закрытые распорками 13 подпазовые каналы 10, по зубцовой части сердечника 1 статора с обмоткой 2 и выходит в зазор 9. Из зазора 9 он попадает в вентиляционные каналы 15 ротора 4, охлаждает активные части ротора и выходит в зазор 9 вентиляционной зоны 12. Далее воздух через зубцовую часть сердечника 1 выходит в подпазовые каналы 10 статора и, охлаждая торцевую часть статора (крайние пакеты сердечника 1, нажимную плиту 3, лобовые части обмотки 2 статора), направляется к вентилятору. Частичный перепуск воздуха из зоны 11 в зону 12 осуществляется через зазор (позицией не обозначен) между разделительными перегородками 16 и расточкой сердечника 1 статора. Охлаждающий воздух, поступающий из пространства 7 в радиальные каналы 6 вентиляционной зоны 12, проходит через спинку сердечника 1 статора и через перепускные отверстия 17 в дистанционных распорках 14 выходит в подпазовый канал 10 и далее в торцевую часть статора. Возможно исполнение, когда воздух проходит через спинку сердечника 1 и по аксиальным каналам 19 выходит в торцевую часть статора.

По второму варианту решения вентиляция электрической машины по открытым в зазор 9 радиальным каналам 6 осуществляется так же, как в первом варианте решения. Вентиляция по закрытым в сторону зазора радиальным каналам 21 осуществляется следующим образом. Воздух, поступающий в каналы 21 из пространства 7, проходит через спинку сердечника в зубцовую часть, огибает боковые образующие 23 U-образных распорок 22 и выходит в подпазовые каналы 10.

Введение закрытых со стороны зазора вентиляционных каналов 21 в зоны 11 и 12 позволяет отвести часть тепла, выделяющегося в сердечнике статора, обмотке, на поверхности ротора и в зазоре. Таким образом, обеспечивается снижение температуры обмотки статора в зонах 12 на 20-25°С и снижение температуры обмотки ротора примерно на 10°С.

Предлагаемая система вентиляции позволяет обеспечить интенсивное охлаждение всех активных частей электрической машины большой мощности, получить более равномерное распределение температуры по длине статора и ротора. Перепад давления воздуха между зонами 11 и 12 создается установленными на роторе вентиляторами. Это позволяет путем подбора вентиляторов обеспечить оптимальную величину перепада давления и эффективно вентилировать ротор большой длины, характерный для мощных турбогенераторов. Решение отличается конструктивной простотой и технологичностью.

Источники информации

1. Патент US 3265912, фирма Westinghouse, H02K 3/24б, Н02К 9/00, приоритет от 15.06.64, опубл. 09.08.66.

2. Патент JP 62236340, фирма Hitachi, H02K 1/20, приоритет от 07.04.86, опубл. 16.10.87.

3. Патент RU 2246786, фирма Ленинградский электромашиностроительный завод, Н02К 9/08, приоритет от 09.07.2003, опубл. 20.02.2005.

1. Система вентиляции электрической машины, содержащая ротор, зазор, статор с подпазовыми вентиляционными каналами и образованными с помощью дистанционных распорок радиальными вентиляционными каналами, открытыми в пространство между корпусом и спинкой статора, отличающаяся тем, что радиальные вентиляционные каналы открыты в зазор и по исполнению дистанционных распорок подразделены на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами.

2. Система вентиляции электрической машины по п.1, отличающаяся тем, что кольцевые разделительные перегородки скреплены с ротором.

3. Система вентиляции электрической машины по п.1, отличающаяся тем, что кольцевые разделительные перегородки скреплены со статором.

4. Система вентиляции электрической машины по любому из пп.1-3, отличающаяся тем, что в дистанционных распорках, перекрывающих вход охлаждающего потока в подпазовые вентиляционные каналы со стороны пространства между корпусом и спинкой статора, выполнены перепускные отверстия.

5. Система вентиляции электрической машины по любому из пп.1-3, отличающаяся тем, что в спинке статора выполнены аксиальные отверстия.

6. Система вентиляции электрической машины, содержащая ротор, статор с образованными с помощью дистанционных распорок радиальными вентиляционными каналами, открытыми в пространство между корпусом и спинкой статора и закрытыми со стороны зазора, с распорками в зубцовой части статора, имеющими U-образную форму и охватывающими подпазовые вентиляционные каналы, отличающаяся тем, что закрытые со стороны зазора радиальные вентиляционные каналы чередуются в аксиальном направлении с дополнительно выполненными в статоре открытыми в зазор и в пространство между корпусом и спинкой статора радиальными вентиляционными каналами, подразделенными по исполнению дистанционных распорок на два типа, в каналах одного типа установлены дистанционные распорки, перекрывающие вход охлаждающего потока в подпазовые каналы по их периметру, а в каналах другого типа - со стороны пространства между корпусом и спинкой статора, причем совокупности каналов каждого типа образуют чередующиеся в аксиальном направлении вентиляционные зоны, на границах которых в зазоре установлены кольцевые разделительные перегородки, а в роторе выполнены вентиляционные каналы, каждый из которых сообщается с упомянутыми вентиляционными зонами.

7. Система вентиляции электрической машины по п.6, отличающаяся тем, что кольцевые разделительные перегородки скреплены с ротором.

8. Система вентиляции электрической машины по п.6, отличающаяся тем, что кольцевые разделительные перегородки скреплены со статором.

9. Система вентиляции электрической машины по любому из пп.6-8, отличающаяся тем, что в дистанционных распорках, перекрывающих вход охлаждающего потока в подпазовые вентиляционные каналы со стороны пространства между корпусом и спинкой статора, выполнены перепускные отверстия.

10. Система вентиляции электрической машины по любому из пп.6-8, отличающаяся тем, что в спинке статора выполнены аксиальные отверстия.



 

Похожие патенты:

Изобретение относится к области электротехники, в частности - к электрическим машинам, и касается особенностей выполнения системы их охлаждения. .

Изобретение относится к области электротехники, в частности к секционированным вентильно-индукторным двигателям большой мощности с замкнутой системой принудительного воздушного охлаждения.

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве генераторов электрического тока и иных нуждающихся в охлаждении электрических машин.

Изобретение относится к электрическим машинам, а именно к индукторным генераторам. .

Изобретение относится к судовым электрическим движителям. .

Изобретение относится к области электротехники. .

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве турбогенераторов и иных нуждающихся в охлаждении электрических машин.

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве и эксплуатации турбогенераторов и иных нуждающихся в охлаждении электрических машин.

Изобретение относится к области электротехники и касается особенностей эксплуатации электрических машин, в частности снижения влагосодержания газа, используемого для охлаждения турбогенераторов или их консервации в период длительного простоя или останова.

Изобретение относится к областям электротехники, электроэнергетики и электромашиностроения, в частности к генераторам с водородным охлаждением, и предназначено для улучшения эксплуатационных характеристик турбогенератора, повышения их КПД и безопасности на электростанциях.

Изобретение относится к области электротехники, в частности - к электрическим машинам, и касается особенностей выполнения системы их охлаждения. .

Изобретение относится к области электротехники, а именно - к электрическим машинам с охлаждаемым внутри ротором. .

Изобретение относится к области электротехники и электромашиностроения и может быть использовано при производстве турбогенераторов и других, нуждающихся в охлаждении электрических машин.

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве генераторов электрического тока и иных нуждающихся в охлаждении электрических машин.

Изобретение относится к области электротехники и электромашиностроения, в частности к крупным электрическим машинам, например, к турбогенераторам. .

Изобретение относится к области электротехники и электромашиностроения, касается охлаждения статора электрической машины. .

Изобретение относится к области электромашиностроения, а именно к устройствам охлаждения электрических машин. .

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве турбогенераторов и иных нуждающихся в охлаждении электрических машин.

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве и эксплуатации турбогенераторов и иных нуждающихся в охлаждении электрических машин.

Изобретение относится к способу и устройству для быстрого сброса давления в установке с, по меньшей мере, первой и второй частью корпуса, причем первая часть корпуса в нормальном состоянии содержит атмосферу водорода при повышенном давлении, которая отделена от внутреннего пространства второй части корпуса, причем при отказе водородного уплотнения избыточное давление водорода сбрасывают через линию быстрого спуска.

Изобретение относится к области электротехники, в частности к электрическим машинам с постоянными магнитами, и касается особенностей конструктивного выполнения устройства для зажима и фиксации постоянных магнитов на поверхности ротора электрической машины, а также способа осуществления зажима и фиксации постоянных магнитов.
Наверх