Роторный гидродинамический кавитационный аппарат для обработки жидких сред (варианты)

Группа изобретений относится к устройствам создания кавитации в потоке жидких сред для воздействия на них с целью направленного изменения их свойств и может быть использована для осуществления различных технологических процессов (измельчения, диспергирования, эмульгирования, гомогенизации, перемешивания, механохимической активации, обеззараживания, нагревания и др.), протекающих в жидких средах, в горнорудной, топливной, химической, фармацевтической, лакокрасочной и других отраслях промышленности. Роторный гидродинамический кавитационный аппарат для обработки жидких сред содержит корпус с патрубками подачи и отвода обрабатываемой жидкой среды и рабочей камерой. Внутри камеры соосно установлены статор, содержащий, по меньшей мере, один концентрический ряд кавитаторов, и закрепленный на приводном валу ротор, содержащий насосные лопатки и, по меньшей мере, один концентрический ряд кавитаторов. В другом варианте изобретения внутри камеры соосно установлены два закрепленных на приводных валах и вращающихся один навстречу другому ротора. Каждый ротор содержит, по меньшей мере, один концентрический ряд кавитаторов. Один из роторов снабжен насосными лопатками. При этом количество кавитаторов ротора, снабженного насосными лопатками, является простым числом не менее 7 в ряду и увеличивается в каждом следующем концентрическом ряду в направлении от приводного вала к периферии. Техническим результатом является снижение уровня шума, улучшение условий эксплуатации и увеличение срока службы аппарата. 2 н.п. ф-лы, 4 ил.

 

Группа изобретений относится к устройствам создания кавитации в потоке жидких сред для воздействия на них с целью направленного изменения их свойств и может быть использована для осуществления различных технологических процессов (измельчения, диспергирования, эмульгирования, гомогенизации, перемешивания, механохимической активации, обеззараживания, нагревания и др.), протекающих в жидких средах, в горнорудной, топливной, химической, фармацевтической, лакокрасочной и других отраслях промышленности.

Известны многочисленные конструкции гидродинамических аппаратов для создания кавитации, включающих корпус с входным и выходным патрубками, концентрично расположенные внутри корпуса ротор и статор (или два вращающиеся навстречу один другому ротора) с концентрическими рядами лопаток (кавитаторов), которые используются под различными названиями (гидродинамический диспергатор, кавитационный смеситель, роторный аппарат гидроударного действия, ультразвуковой активатор, пульсационный аппарат роторного типа, роторный импульсный аппарат и др.).

Известен ротационный аппарат для взаимодействия жидкости с жидкостью, газом или порошком с двумя комплектами полых коаксиальных цилиндров (или конусов) с отверстиями, число которых одинаково или соотношение между ними в разных цилиндрах (конусах) имеет целочисленное значение. При вращении одного из этих цилиндров (ротора) относительно другого (статора) или обоих цилиндров (роторов), вращающихся навстречу один другому, происходит быстрое чередование совмещения и несовмещения прорезей разных цилиндров. Это вызывает интенсивные колебания в жидкой среде, поступающей во внутренний цилиндр и последовательно проходящей все цилиндры в радиальном направлении. /Авторское свидетельство SU №127999, 1960 г./

Недостатком этого аппарата являются биения силы тока (до±50%) в цепи приводного электродвигателя аппарата вследствие нестабильности гидродинамического сопротивления вращению ротора, обусловленной тем, что число отверстий в цилиндрах (конусах) одинаково или соотношение между ними в разных цилиндрах (конусах) имеет целочисленное значение.

Известны роторные аппараты гидроударного действия /Авторское свидетельство SU №1586759, B01F 7/12 1990 г., патент RU №2064822, B01F 7/00, 1996 г. и патент RU №2050959, B01F 7/00, 1995 г./, содержащие корпус с входным и выходным патрубками и коаксиально расположенные в нем ротор и статор, выполненные в виде тел вращения с каналами в их боковых стенках.

Известные аппараты имеют в общем случае практически одинаковую принципиальную схему и конструктивно отличаются друг от друга в основном конфигурацией и количеством кавитаторов и профилем каналов между ними.

Существенным недостатком известных роторных гидродинамических аппаратов является возникновение биений (нестабильных пульсаций) давления обрабатываемой среды и биений силы тока в цепи приводного электродвигателя при работе аппарата в кавитационном или близких к кавитационному режимах. Этот недостаток вызван тем, что в известных роторных гидродинамических аппаратах количество кавитаторов или прорезей ротора и статора кратно 2, 3 или 5. При совпадении в процессе вращения ротора зазоров между такими кавитаторами в радиальном направлении возникают резонансные пульсирующие потоки обрабатываемой жидкости, приводящие к пульсациям гидродинамического сопротивления вращению ротора, пульсациям давления (в диапазоне ±30% и более) в выходном патрубке аппарата и пульсациям силы тока (в диапазоне ±30% и более) в электрической цепи приводного электродвигателя. Вследствие этого снижается эффективность кавитационного воздействия на обрабатываемую жидкость, увеличивается энергоемкость процесса, ухудшаются условия и сокращается срок эксплуатации роторного гидродинамического аппарата.

Задачей предложенных технических решений является создание универсального устройства (гидродинамического кавитационного аппарата) с низкими энергозатратами и стабилизированным гидродинамическим сопротивлением вращению ротора для предотвращения биений (нестабильных пульсаций) давления обрабатываемой среды и биений силы тока в цепи приводного электродвигателя.

Технический результат от использования двух вариантов исполнения предложенного гидродинамического кавитационного аппарата для обработки жидких сред заключается в снижении уровня шума, улучшении условий эксплуатации и увеличении срока службы аппарата.

Поставленная задача согласно первому варианту решается, а технический результат достигается за счет того, что роторный гидродинамический кавитационный аппарат для обработки жидких сред содержит корпус с патрубками подачи и отвода обрабатываемой жидкой среды и рабочей камерой, внутри которой соосно установлены статор, содержащий, по меньшей мере, один концентрический ряд кавитаторов, и закрепленный на приводном валу ротор, содержащий насосные лопатки и, по меньшей мере, один концентрический ряд кавитаторов, при этом количество кавитаторов ротора в ряду является простым числом не менее 7 и увеличивается в каждом следующем концентрическом ряду в направлении от приводного вала к периферии.

Поставленная задача согласно второму варианту решается, а технический результат достигается за счет того, что роторный гидродинамический кавитационный аппарат для обработки жидких сред содержит корпус с патрубками подачи и отвода обрабатываемой жидкой среды и рабочей камерой, внутри которой соосно установлены два закрепленных на приводных валах и вращающихся навстречу один другому ротора, каждый из которых содержит, по меньшей мере, один концентрический ряд кавитаторов, при этом один из роторов снабжен насосными лопатками, а количество его кавитаторов в ряду является простым числом не менее 7 и увеличивается в каждом следующем концентрическом ряду в направлении от приводного вала к периферии.

Краткое описание фигур чертежей.

Группа изобретений поясняется чертежами.

На Фиг.1 схематически изображен продольный разрез роторного гидродинамического кавитационного аппарата для обработки жидких сред, содержащего ротор и статор, снабженные двумя концентрическими рядами кавитаторов; на Фиг.2 - сечение по A-A на Фиг.1; на Фиг.3 - продольный разрез роторного гидродинамического кавитационного аппарата для обработки жидких сред, содержащего два ротора, снабженные двумя концентрическими рядами кавитаторов; на Фиг.4 - сечение по B-B на Фиг.3.

По первому варианту технического решения роторный гидродинамический кавитационный реактор для обработки жидких сред (Фиг.1) содержит корпус 1 с патрубком 2 подачи исходной жидкой среды, патрубком 3 отвода обработанной жидкой среды и рабочей камерой 4. Внутри рабочей камеры 4 соосно установлены статор 5 с кавитаторами 6 и закрепленный на приводном валу 7 ротор 8 с насосными лопатками 9 и кавитаторами 10. Приводной вал 7 ротора 8 установлен в подшипниковом узле 11. Кавитаторы статора 6 и ротора 10 (Фиг.2) расположены рядами по концентрическим окружностям, при этом количество кавитаторов 10 в каждом ряду ротора 8 является простым числом более 7, например - 11 и 17.

Устройство работает следующим образом.

Исходную жидкую среду через патрубок подачи исходной жидкой среды 2 подают в рабочую камеру 4 корпуса 1 роторного гидродинамического кавитационного аппарата и насосными лопатками 9 на ряды кавитаторов 6 статора 5 и кавитаторов 10 ротора 8. В момент перекрывания кавитаторами 6 статора 5 зазоров между кавитаторами 10 ротора 8 происходит резкое повышение давления (прямой гидравлический удар). В момент совмещения зазоров между кавитаторами 6 статора 5 и кавитаторами 10 ротора 8 происходит резкое снижение давления с падением скорости жидкой среды и возникновение в ней гидродинамической кавитации. В процессе гидродинамической кавитации происходит образование полей кавитационных пузырьков и кумулятивных микроструек диаметром 5-200 мкм, движущихся со скоростью от 50 до 1500 м/с. При движении жидкой среды в зазорах между кавитаторами скорость движения уменьшается, давление возрастает и происходит схлопывание кавитационных пузырьков. Давление в точках схлопывания кавитационных пузырьков может достигать 1,5×103 МПа.

В момент перекрывания кавитаторами 10 ротора 8 зазоров между кавитаторами 6 статора 5 содержащиеся в жидкой среде примеси (минеральные частицы, патогенная микрофлора и др.) разрушаются под действием ударных нагрузок и значительных сжимающих напряжений, возникающих на их поверхностях.

В момент совмещения зазоров между кавитаторами 10 и 6 соответственно ротора 8 и статора 5 содержащиеся в жидкой среде примеси (минеральные частицы, патогенная микрофлора и др.) разрушаются в результате расклинивающего воздействия кавитационных микроструек, а также под действием значительных растягивающих напряжений, возникающих на поверхностях примесей в результате исчезновения всестороннего сжатия.

Насосные лопатки 9 установлены на приводном валу 7 ротора 8 для создания дополнительного давления в обрабатываемой жидкой среде.

Количество кавитаторов 10 ротора 8 в концентрическом ряду является простым числом (делящимся только само на себя и на единицу), что позволяет исключить совпадение в процессе вращения ротора зазоров между кавитаторами смежных в радиальном направлении (в направлении от приводного вала к периферии) концентрических рядов и, как следствие, приводит к стабилизации гидродинамического сопротивления вращению ротора, при этом пульсации давления в выходном патрубке аппарата и пульсации силы тока в цепи приводного электродвигателя не превышают ±5%.

Количество кавитаторов в одном концентрическом ряду ротора менее 7 не позволяет полностью исключить совпадение в процессе вращения ротора зазоров между кавитаторами смежных в радиальном направлении концентрических рядов.

Известно, что интенсивность кавитации зависит от величины и частоты пульсаций давления, возникающего при перекрытии кавитаторами ротора зазоров между кавитаторами статора. Частоту этих пульсаций можно повысить посредством увеличения количества кавитаторов ротора и статора, повышением частоты вращения ротора или дополнительным вращением статора в сторону, противоположную направлению вращения ротора.

Увеличение количества кавитаторов в ряду ротора имеет предел, обусловленный радиусом ротора, минимальным шагом расположения кавитаторов по окружности ротора и минимальной шириной кавитатора, необходимой для полного перекрытия кавитаторами ротора зазоров между кавитаторами статора. Максимально допустимый радиус ротора ограничивается минимально необходимым запасом прочности элементов ротора на растяжение под действием центробежных сил, возникающих при вращении ротора.

Максимально допустимая частота вращения ротора ограничивается параметрами подшипникового узла вала ротора (условиями смазки, допустимой температурой и необходимым ресурсом подшипников качения) и, как правило, не превышает 50 Гц (3000 об/ мин).

Поэтому наиболее эффективным способом повышения частоты пульсаций в роторном гидродинамическом кавитационном аппарате для обработки жидких сред является применение двух роторов, вращающихся в противоположных направлениях, как предложено во втором варианте технического решения.

По второму варианту технического решения роторный гидродинамический кавитационный реактор для обработки жидких сред (Фиг.3) содержит корпус 1 с патрубком 2 подачи исходной жидкой среды, патрубком 3 отвода обработанной жидкой среды и рабочей камерой 4. Внутри рабочей камеры 4 соосно установлены на приводном валу 7 ротор 8 и на приводном валу 12 малый ротор 13. На приводном валу 7 ротора 8 для создания дополнительного давления в обрабатываемой жидкой системе установлены насосные лопатки 9. На роторе 8 и малом роторе 13 расположены кавитаторы 10 и 14 соответственно. Приводной вал 12 малого ротора 13 установлен в подшипниковом узле 15. Кавитаторы 10 и 14 (Фиг.4) расположены рядами по концентрическим окружностям, при этом количество кавитаторов 10 в каждом ряду ротора 8 является простым числом больше 7, например - 11 и 17.

Устройство работает следующим образом.

Исходную жидкую среду через патрубок 2 подают в рабочую камеру 4 корпуса 1 роторного гидродинамического кавитационного аппарата и насосными лопатками 9 на ряды кавитаторов 10 и 14. В момент перекрывания кавитаторами 14 малого ротора 13 зазоров между кавитаторами 10 ротора 8 происходит резкое повышение давления (прямой гидравлический удар). В момент совмещения зазоров между кавитаторами 14 малого ротора 13 и кавитаторами 10 ротора 8 происходит резкое снижение давления с падением скорости жидкой системы и возникает гидродинамическая кавитация в обрабатываемой жидкой системе. В процессе гидродинамической кавитации происходит образование полей кавитационных пузырьков и кумулятивных микроструек диаметром 5-200 мкм, движущихся со скоростью от 50 до 1500 м/с. При движении жидкой системы в зазорах между кавитаторами скорость движения уменьшается, давление возрастает и происходит схлопывание кавитационных пузырьков. Давление в точках схлопывания кавитационных пузырьков может достигать 1,5×103 МПа.

В момент перекрывания кавитаторами 10 ротора 8 зазоров между кавитаторами 14 малого ротора 13 содержащиеся в жидкой среде примеси (минеральные частицы, патогенная микрофлора и др.) разрушаются под действием ударных нагрузок и значительных сжимающих напряжений, возникающих на их поверхностях.

В момент совмещения зазоров между кавитаторами 10 и 14 соответственно ротора 8 и малого ротора 13 содержащиеся в жидкой среде примеси (минеральные частицы, патогенная микрофлора и др.) разрушаются в результате расклинивающего воздействия кавитационных микроструек, а также под действием значительных растягивающих напряжений, возникающих на поверхностях примесей в результате исчезновения всестороннего сжатия.

Количество кавитаторов 10 ротора 8 в ряду является простым числом (делящимся только само на себя и на единицу), что позволяет исключить совпадение в процессе вращения роторов зазоров между кавитаторами смежных в радиальном направлении (в направлении от приводного вала к периферии) концентрических рядов и, как следствие, приводит к стабилизации гидродинамического сопротивления вращению ротора, при этом пульсации давления в выходном патрубке аппарата и пульсации силы тока в цепи приводного электродвигателя не превышают ±5%.

Количество кавитаторов в одном концентрическом ряду ротора менее 7 не позволяет полностью исключить в процессе вращения роторов совпадение зазоров между кавитаторами смежных в радиальном направлении концентрических рядов. Устройство по второму варианту при прочих равных условиях имеет следующие преимущества по сравнению с первым вариантом:

- интенсивность кавитационного воздействия повышается в два раза;

- количество кавитаторов может быть уменьшено в два раза;

- диаметр ротора может быть увеличен в два раза;

- ресурс подшипниковых узлов увеличивается в 4 раза и более.

Предложенное устройство позволяет существенно повысить эффективность и снизить энергоемкость кавитационной обработки жидких сред при снижении уровня шума, улучшении условий эксплуатации и увеличении срока службы аппарата.

Таким образом, предложенные технические решения позволяют создать универсальный гидродинамический кавитационный аппарат для обработки жидких сред с невысокими энергозатратами и стабилизированным гидродинамическим сопротивлением вращению ротора, предотвратить вредные пульсации силы тока в цепи приводного электродвигателя, а также снизить уровень шума и увеличить срок эксплуатации аппарата.

1. Роторный гидродинамический кавитационный аппарат для обработки жидких сред, характеризующийся тем, что содержит корпус с патрубками подачи и отвода обрабатываемой жидкой среды и рабочей камерой, внутри которой соосно установлены статор, содержащий, по меньшей мере, один концентрический ряд кавитаторов, и закрепленный на приводном валу ротор, содержащий насосные лопатки и, по меньшей мере, один концентрический ряд кавитаторов, при этом количество кавитаторов ротора в ряду является простым числом не менее 7 и увеличивается в каждом следующем концентрическом ряду в направлении от приводного вала к периферии.

2. Роторный гидродинамический кавитационный аппарат для обработки жидких сред, характеризующийся тем, что содержит корпус с патрубками подачи и отвода обрабатываемой жидкой среды и рабочей камерой, внутри которой соосно установлены два закрепленных на приводных валах и вращающихся навстречу один другому ротора, каждый из которых содержит, по меньшей мере, один концентрический ряд кавитаторов, при этом один из роторов снабжен насосными лопатками, а количество его кавитаторов в ряду является простым числом не менее 7 и увеличивается в каждом следующем концентрическом ряду в направлении от приводного вала к периферии.



 

Похожие патенты:
Изобретение относится к способу приготовления наноэмульсий вода в масле или масло в воде, в котором дисперсная фаза распределена в дисперсионной фазе в виде капель, имеющих диаметр от 1 до 500 нм, включающему: 1) приготовление гомогенной смеси (1) вода/масло, характеризующейся поверхностным натяжением менее 1 мН/м, включающей воду в количестве от 30 до 70 масс.%, по меньшей мере два поверхностно-активных вещества с различным ГЛБ, выбираемыми из неионных, анионных, полимерных поверхностно-активных веществ, причем указанные поверхностно-активные вещества присутствуют в таком количестве, чтобы сделать смесь гомогенной; 2) разбавление смеси (1) в дисперсионной фазе, состоящей из масла или воды с добавлением поверхностно-активного вещества, выбираемого из неионных, анионных, полимерных поверхностно-активных веществ, причем количество дисперсионной фазы и поверхностно-активного вещества является таким, чтобы получить наноэмульсию с ГЛБ, отличающимся от ГЛБ смеси (1).

Изобретение относится к двигателестроению, в частности к топливной аппаратуре двигателей внутреннего сгорания. .

Изобретение относится к смешиванию жидкой краски и может использоваться для окрашивания пластмасс. .

Изобретение относится к ресурсо- и природосберегающим топливным системам питания транспортных средств, которые монтируются в штатной системе питания двигателя внутреннего сгорания (ДВС) на транспортном средстве и которые предусматривают использование топливных эмульсий типа «вода в углеводороде».
Изобретение относится к эмульгирующим составам для изготовления эмульсий «вода в масле», применяемым в производстве эмульсионных взрывчатых веществ. .

Изобретение относится к фармацевтической химии, в частности к способу получения микроэмульсионной или субмикронной эмульсионной композиции «масло-в-воде» (м/в) для чрескожной доставки по меньшей мере одного фармацевтически активного ингредиента, включающий: а) смешение первой части, содержащей одно вещество из группы, включающей животные, минеральные или растительные масла, силаны, силоксаны, эфиры, жирные кислоты, жиры или алкоксилированные спирты, и одно или более липофильное ПАВ, и второй части, содержащей воду и одно гидрофильное ПАВ, б) нагревание смеси до температуры слияния фаз, при постоянном перемешивании с получением микроэмульсии или субмикронной эмульсии «масло в воде», в) охлаждение микроэмульсии или субмикронной эмульсии, г) добавление третьей части к микроэмульсии или субмикронной эмульсии при температуре от 2°С до температуры слияния фаз, третья часть при необходимости предварительно смешана и нагрета до растворения компонентов и содержит один компонент, выбранный из группы, включающей поверхностно-неактивные соединения амфифильного типа, ПАВ и воду, при условии, что если третья часть содержит воду, она также содержит и поверхностно-неактивное соединение амфифильного типа и/или ПАВ.

Изобретение относится к способам получения многокомпонентных смесевых топлив и может быть использовано для обработки существующих топлив и при получении новых видов смесевых топлив, например, на базе веществ растительного происхождения, продуктов жизнедеятельности живых организмов и отходов агропромышленного комплекса.

Изобретение относится к способу непрерывного получения эмульсии с особенно узким распределением капелек по размеру и может использоваться при полимеризации олефинов.

Изобретение относится к процессу приготовления эмульсий и может использоваться при получении эмульсии из взаимонерастворимых жидких компонентов с различной электропроводностью для двигателей внутреннего сгорания в автотранспорте и судоходстве, для приготовления водоэмульсионных красок в лакокрасочном производстве, а также лекарственных препаратов.

Изобретение относится к устройствам для создания импульсных колебаний в проточной жидкой среде и может быть использовано для проведения процессов эмульгирования, абсорбции и др.

Изобретение относится к строительной технике, а именно к устройствам для механической активации суспензий с волокнистыми материалами. .

Смеситель // 2393914
Изобретение относится к химической промышленности и может быть использовано для получения эмульсий и суспензий с однородным высокодисперсным составом. .

Изобретение относится к акустическим способам воздействия на смеси углеводородов. .

Изобретение относится к ультразвуковым устройствам для приготовления суспензий, смесей, гомогенизированных пищевых продуктов и может использоваться в пищевой промышленности.

Изобретение относится к устройству для обработки жидких сред и может быть использовано для диспергирования различных веществ, нерастворимых в воде, для эмульгирования и деэмульгирования эмульсий, для ускорения протекания химических реакций, проходящих в жидкой фазе и т.д.

Смеситель // 2362617
Изобретение относится к устройствам для приготовления суспензий, эмульсий, растворов, разрушения взвешенных фаз, интенсификации химических реакций путем воздействия на жидкость энергией акустического излучения.

Изобретение относится к смешиванию жидких и порошкообразных веществ, обладающих текучестью, и может использоваться в химической, лакокрасочной, пищевой промышленности.

Изобретение относится к устройствам для получения водно-топливной эмульсии и может использоваться в энергетической, нефтегазодобывающей, металлургической, химической, автомобильной и других областях промышленности, в частности при сжигании мазута на котельных, котлах ТЭЦ, ТЭС, в котлах цехов металлургических заводов.

Изобретение относится к получению суспензий частиц воска, парафина или смолы и может использоваться в биотехнологии, медицине, парфюмерной и пищевой промышленности, в производстве лекарственных и биологически активных веществ.

Изобретение относится к ультразвуковой обработке жидкости и может использоваться при производстве чернил, красок, фармацевтических композиций, проведения различных химических реакций и образования эмульсий
Наверх