Способ определения долговечности образцов из композиционных материалов при циклическом нагружении



Способ определения долговечности образцов из композиционных материалов при циклическом нагружении
Способ определения долговечности образцов из композиционных материалов при циклическом нагружении
Способ определения долговечности образцов из композиционных материалов при циклическом нагружении
Способ определения долговечности образцов из композиционных материалов при циклическом нагружении

 


Владельцы патента RU 2439532:

Государственное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет" (ГУ КузГТУ) (RU)

Изобретение относится к области измерений и, в частности, к способам контроля механических характеристик композиционных материалов путем исследования электромагнитной эмиссии при трещинообразовании и разрушении. Сущность: осуществляют нагружение образца с постоянной скоростью. Регистрируют число импульсов электромагнитной эмиссии во времени с момента начала нагружения вплоть до полного разрушения образца и определяют по измеренным параметрам кинетические константы прочности и долговечности материала. В процессе испытаний образца поддерживают постоянную температуру, причем нагружение производится только при возрастающей нагрузке. Технический результат: повышение точности и уменьшение трудоемкости определения долговечности. 2 ил., 1 табл.

 

Изобретение относится к области измерений и, в частности, к способам контроля механических характеристик композиционных материалов путем исследования электромагнитной эмиссии при трещинообразовании и разрушении.

Известен способ (патент РФ №2020476, G01N 29/14, - 1991) определения долговечности образцов из композиционных материалов, заключающийся в том, что образец нагружают с постоянной скоростью 103-104 Па/с, регистрируют число импульсов электромагнитной эмиссии заданной длительности и амплитуды во времени от начала нагружения до полного разрушения образца и определяют по измеренным параметрам кинетические константы прочности и долговечности материала образца.

Недостатком данного способа при циклических нагрузках является необходимость проведения большого числа циклов "нагружение-разгрузка" до полного разрушения образца и определения полного числа импульсов N* до разрушения. Это особенно заметно при малой амплитуде циклической нагрузки, составляющей доли процента от разрушающей. При этом страдает точность определения кинетических констант прочности и прогноза долговечности материала, поскольку для упрощения расчетов этих параметров скорость нагружения выбирается в довольно узком диапазоне скоростей, уравнения для расчета линеаризируются и ошибка в определении констант прочности может превышать 45-60%, что приводит к ошибкам в прогнозных оценках долговечности на два - три порядка.

Наиболее близким к заявляемому техническому решению (изобретению) является способ определения долговечности образцов из композиционных материалов при циклических нагрузках (патент РФ №2145416 C1, G01N 29/14, - 1998), заключающийся в том, что образец нагружают и разгружают циклически с постоянной скоростью, выбираемой в диапазоне 103-105 Па/с. При этом регистрируют число импульсов электромагнитной эмиссии заданных длительности и амплитуды в течение первого цикла нагружения - разгрузки. Фиксируют время нарастания фронта этих импульсов, а затем нагружают образец до полного разрушения. Регистрируют время нарастания фронта импульса, порождаемого магистральной трещиной разрушения. По измеренным параметрам определяют кинетические константы прочности и долговечности материала. С учетом этих констант находят полное число циклов, которое образец может выдержать до разрушения (т.е. его долговечность).

Недостатком данного способа является ограниченный диапазон скорости нагружения при приложении циклической нагрузки, что опять-таки порождает большую погрешность в определении кинетических констант прочности и долговечности материалов. При этом температура образца в процессе испытаний не контролируется, что приводит к дополнительным погрешностям, т.к. при расчетах она считается постоянной.

Техническим результатом изобретения является повышение точности и уменьшение трудоемкости определения долговечности.

Указанный технический результат достигается тем, что в способе определения долговечности образцов из композиционных материалов при циклических нагрузках, включающем нагружение образца с постоянной скоростью, регистрацию числа импульсов электромагнитной эмиссии во времени с момента начала нагружения вплоть до полного разрушения образца, и определения по измеренным параметрам кинетических констант прочности и долговечности материала согласно изобретению образец нагружают со скоростями 10-102 Па/с, в процессе испытаний образца поддерживают постоянную температуру, нагружение производится только при возрастающей нагрузке.

Заявляемый способ поясняется чертежами, где на фиг.1 показана установка, реализующая способ, на фиг.2 - кинетическая кривая накопления импульсов электромагнитной эмиссии.

Сущность изобретения состоит в следующем.

При возникновении микротрещин на границе волокон и связующего компонента, а также внутри волокон или в связующем излучаются короткие импульсы электромагнитной эмиссии. Число импульсов совпадает с числом возникающих микротрещин. Время нарастания фронта импульсов электромагнитного излучения совпадает со временем роста трещины. Поэтому, регистрируя число импульсов, можно определить число микротрещин, накопленных за определенный промежуток времени.

В качестве адекватной кинетическому процессу трещинообразования математической модели используют:

1) скорректированное кинетическое уравнение С.Н.Журкова для скорости трещинообразования

2) условие необратимости накопления повреждений структуры материала типа Робинсона-Бэйли

где

U0, γ - кинетические константы разрушения, определяемые на образцах с размером ℓ, при температуре Т, °К;

k - постоянная Больцмана;

τ0 - период тепловых атомных колебаний, с;

σ(t) - меняющееся во времени напряжение на образце;

Lc - масштабный коэффициент, учитывающий размер объекта, в котором регистрируется процесс электромагнитной эмиссии;

τ - время до разрушения образца, с;

е - основание натурального логарифма;

N* - критическое (предельное) число трещин, накапливающихся к моменту полного разрушения некоторого объема V материала;

LC=L/b - масштабный коэффициент; - средний диаметр образцов материала, м;

b - диаметр образцов материала, на которых определяются кинетические константы U0 и γ материала, м.

Кинетическая модель (1)-(2) нечувствительна к масштабному уровню разрушения, учитывает подобие процессов разрушения на разных уровнях, а кинетические константы U0 и γ, найденные на испытываемых образцах, могут быть использованы в аналогичных условиях нагружения (объемное, одноосное сжатие-растяжение) для прогноза разрушения на образцах любых размеров.

Из этих уравнений, предположив, что циклическое нагружение осуществляется путем приложения сжимающего или растягивающего напряжения с постоянной частотой (несимметрическое циклическое нагружение σminmax=0) и, считая, что скорость изменения напряжений постоянна в каждом цикле , для числа накопленных в каждом цикле импульсов ЭМИ композита, используя (1) и (2), получают уравнение

где

t - время эксперимента, с;

- скорость нагружения, Па/с.

Кинетические константы разрушения определяются из условия минимума суммы квадратов отклонений теоретических значений, от экспериментальных точек Nk кинетической кривой накопления импульсов ЭМИ

При этом, поскольку в уравнении (3) мы не пренебрегаем единицей, существенно возрастает точность определения констант U0 и γ.

В результате расчетов получаем уравнения для нахождения кинетических констант, которые в последующем могут быть использованы как константы для соответствующих типов композиционных материалов.

где

.

Определив значения U0 и γ, на основе решения нелинейных уравнений (5), (6) можно спрогнозировать количество циклов приложения нагрузки до разрушения образца по формуле (долговечность образца)

где

- амплитудные значения напряжений при нагружении образца композита, Па;

f - частота приложения нагрузки, Гц;

Lc=1,2.

В дальнейшем при использовании формулы (7) и полученных выше кинетических констант рассчитывают долговечность композитных материалов при любых заданных значениях температуры, частоты, амплитудной нагрузки и заданном масштабном коэффициенте.

Предлагаемый способ реализуют следующим образом.

Испытуемый образец испытывают на лабораторной установке (фиг.1). Образец материала 1 помещают в экранированную ячейку 2 с антенной 3 и нагружают при помощи устройства 4 с любой постоянной скоростью до полного разрушения. В процессе нагружения термопарой 5 контролируют температуру образца, с помощью обдува образца воздухом заданной температуры ее выдерживают постоянной в процессе нагружения образца, с помощью антенны и усилителя 6 регистрируют импульсы электромагнитной эмиссии. С помощью счетчика 8 регистрируют число импульсов, таймер 9 регистрирует текущее время. Накопленное число импульсов Ni и время ti процесса накопления этих импульсов поступают в запоминающее устройство 10, из которого их выводят на экран дисплея или принтер (фиг.2). Осциллограф 7 используют для контроля помех при проведении измерения.

Примером применения предлагаемого способа может служить следующее. Образец фенолоформальдегидного композита при температуре 293 К нагрузили с постоянной скоростью вплоть до полного разрушения. В результате испытания получена кинетическая кривая накопления импульсов электромагнитной эмиссии (фиг.2), по которой согласно уравнениям (5) и (6) определены кинетические константы U0 и γ. Затем по формуле (7) находим долговечность материала образца при заданной частоте нагружения (см. таблицу).

Таблица

Т f γ U0 nц эксп nц теор
МПА К 10-4 Гц 102, Па/с 10-28 м3 10-19 Дж циклов циклов
1,53 293 1,25 1 2,14 1,7 27,7 29

Как видно из таблицы, в целом наблюдается удовлетворительное соответствие циклической долговечности образца композиционного материала, определяемой экспериментально и рассчитанной по формуле (7) на основе найденных из эксперимента кинетических констант разрушения образца (см. таблицу).

В таблице приняты следующие обозначения:

- амплитуда приложения сжимающей нагрузки,

Т - температура образца,

f - частота циклов нагружения - разгрузки;

- скорость нагружения - разгрузки;

U0, γ - кинетические константы разрушения материала;

nц эксп - экспериментально зафиксированное число циклов нагружения - разгрузки до разрушения образца;

nц теор - теоретическая оценка числа циклов нагружения - разгрузки до разрушения образца при заданных условиях.

Расхождение экспериментальных и теоретических данных составило примерно 5%.

Преимущества описанного способа заключаются в следующем:

- скорость нагружения выбирается менее 102. Это дает возможность повысить точность определения U0, и γ, т.к. в модели не пренебрегаем единицей в уравнении (3);

- снижается влияние температурных эффектов, тем самым повышается точность определения U0, γ, а следовательно, и долговечности материалов;

- нагружение образца производится только при возрастающей нагрузке.

Это позволяет не выполнять полный цикл нагружение-разгрузка при циклическом испытании, что дает возможность, не снижая точности прогноза долговечности материала образцов, избежать трудоемких испытаний на усталостную прочность.

Заявляемый способ позволяет повысить точность и уменьшить трудоемкость определения долговечности.

Способ определения долговечности образцов из композиционных материалов при циклических нагрузках, включающий нагружение образца с постоянной скоростью, регистрацию числа импульсов электромагнитной эмиссии во времени с момента начала нагружения вплоть до полного разрушения образца, и определения по измеренным параметрам кинетических констант прочности и долговечности материала, отличающийся тем, что в процессе испытаний образца поддерживают постоянную температуру, причем нагружение производится только при возрастающей нагрузке.



 

Похожие патенты:

Изобретение относится к области строительства и предназначено для определения оптимального числа нагелей в двухслойных деревянных конструкциях балочного типа. .

Изобретение относится к области машиностроения (литейное производство), более конкретно к способам определения механических свойств материалов литых стержневых деталей, а именно к способам определения динамических: модуля упругости Юнга и коэффициента Пуассона.

Изобретение относится к испытательной технике. .

Изобретение относится к испытательной технике, к испытаниям на прочность, преимущественно образцов эквивалентных материалов, используемых при моделировании физико-механических процессов в горном массиве.

Изобретение относится к испытательной технике, к способам и устройствам для исследования деформационных свойств материалов при изучении их демпфирующих свойств. .

Изобретение относится к области нефтегазодобывающей промышленности и может быть использовано при определении упругих свойств пород, результаты определений которых могут быть использованы при бурении скважин и разработке нефтяных и газовых месторождений.

Изобретение относится к испытательной технике, к испытаниям на прочность. .
Изобретение относится к испытательной технике, а именно к способам определения предела выносливости материала. .

Изобретение относится к испытательной технике. .

Изобретение относится к механическим испытаниям изделий, в частности к вибрационным усталостным испытаниям деталей

Изобретение относится к испытательной технике, позволяющей проводить неразрушающие определения прочностных характеристик элементов конструкций по величине их саморазогрева при циклическом нагружении
Изобретение относится к технике испытаний, в частности к способам испытаний конструкционных материалов на усталость, позволяющим контролировать восстановление усталостной прочности деталей в процессе их ремонта и после него

Изобретение относится к испытательной технике, к испытаниям на прочность

Изобретение относится к области исследования прочностных свойств твердых материалов путем приложения к ним механических усилий

Изобретение относится к испытательной технике, к испытаниям на прочность

Изобретение относится к неразрушающему контролю несущей способности строительных и других конструкций из материалов с линейной зависимостью между нагрузкой и деформацией материала

Изобретение относится к испытанию материалов на циклическую прочность (выносливость) и определение параметров их кривой усталости и может быть использовано для определения усталостных характеристик материала в разных областях долговечности

Изобретение относится к испытательной технике, а именно к установкам для испытания трубчатых образцов на усталость при сложном напряженном состоянии, и может быть применена в заводской и исследовательской лаборатории

Изобретение относится к характеризации сопротивления усталостным напряжениям детали, начиная с ее профиля поверхности
Наверх