Гидроакустический доплеровский лаг с алгоритмом многоальтернативной фильтрации эхосигнала, основанным на использовании банка фильтров калмана

Изобретение относится к области гидроакустических лагов, предназначенных для измерения скорости морского объекта. Техническим результатом изобретения является упрощение и удешевление конструкции лага при повышении точности измерений (предельная погрешность -0.1 уз). Гидроакустический доплеровский лаг содержит четырехлучевую гидроакустическую антенну, антенный переключатель, коммутатор излучения, схему согласования антенны, усилитель мощности, коммутатор приемных сигналов, дифференциальный приемник, программируемый усилитель, полосовой фильтр, аналого-цифровой преобразователь, цифровой гетеродин, цифровой фильтр с дециматором, контроллер UART, приемопередатчики RS-232 и RS-422. Лаг дополнительно содержит DSP-процессор, на вход которого поступают данные с цифрового фильтра с дециматором от четырех каналов измерения скорости объекта (нос, корма, левый борт, правый борт), с помощью которого реализуется обработка эхосигнала методом многоальтернативной фильтрации, использующей банк фильтров Калмана и направленной на оценку параметра модели эхосигнала, соответствующего значению скорости объекта, с предельной погрешностью не более 0.1 уз за время не более 4 сек, и выдаются результирующие значения скорости объекта через контроллер UART и приемопередатчики RS-232 и RS-422 внешнему потребителю. 2 ил.

 

Изобретение относится к области морских лагов, предназначенных для измерения скорости морского объекта.

Известны лаги (US №5694372, US №3795893, SU №1840743) с расположением лучей гидроакустической антенны по схеме Янус, которая позволяет существенно снизить погрешности измерения скорости морского объекта при волнении моря и наличии вертикальной скорости объекта.

В настоящее время в доплеровских лагах используется частотный подход, требующий оценки спектра в форме периодограммы на основе преобразования Фурье реализации эхосигнала. Эта оценка обладает свойством несостоятельности и требует для своей выработки значительного времени, приводя к повышенной погрешности и временной задержке в определении скорости. Эхосигнал с достаточной адекватностью аппроксимируется узкополосным случайным процессом, свойства которого определяются неоднородностью отражающей поверхности, конечной шириной диаграммы направленности, условиями распространения, шумом приемника и т.п.

Ближайшим аналогом (прототипом) заявленного изобретения является устройство, описанное в авторском свидетельстве SU №1840743. Устройство-прототип содержит задающий генератор, формирователь программы излучения, усилитель мощности, акустическую антенну, приемно-индикаторное устройство.

Прототип имеет следующие недостатки: низкая частота выработки выходной информации, что не позволяет использовать лаг-прототип на динамичных объектах; зависимость работы лага от внешнего источника глубины.

Задачи, которые решает данное изобретение, заключаются в повышении быстродействия и точности результатов измерения скорости объекта за счет применения оптимального многоальтернативного алгоритма обработки эхосигнала, основанного на банке фильтров Калмана, а также в упрощении и удешевлении конструкции гидроакустического лага, увеличении надежности его работы, облегчении технического обслуживания изделия.

Решение вышеизложенных задач достигается за счет:

- применения алгоритма многоальтернативной фильтрации с использованием банка фильтров Калмана в задаче постобработки эхосигнала;

- реализации алгоритмов цифровой обработки сигнала на стадии подготовки сигнала к постобработке;

- использования схемы Янус в гидроакустической антенне;

- применения стандартного конструктива «Евромеханика 3U» и современной элементной базы.

Сущность изобретения поясняется фиг.1, на которой представлена структурная схема гидроакустического лага.

В состав лага входят:

1 - Четырехлучевая многоэлементная гидроакустическая антенна, представляющая собой фазированную решетку элементов;

2 - Антенный переключатель, предназначенный для разделения сигнала по каналам в режиме приема эхосигнала;

3 - Коммутатор излучения, предназначенный для выбора излучаемого диаметра антенны в режимах работы на больших или малых глубинах под излучающей поверхностью антенны;

4 - Схема согласования антенны, предназначенная для настройки резонанса антенны и снижения потерь мощности в режиме излучения;

5 - Усилитель мощности, представляющий собой схему полного моста, собранную на мощных полевых транзисторах ультразвукового диапазона с управлением от сильноточных полумостовых драйверов;

6 - Коммутатор приемных сигналов, предназначенный для выбора приема отраженного эхосигнала от антенны на малых глубинах, на больших глубинах под излучающей поверхностью антенны; использования тестового сигнала для режима контроля тракта приема;

7 - Дифференциальный приемник эхосигналов, предназначенный для точного приема отраженных эхосигналов и формирования характеристики направленности антенны в режиме приема. Особенностью этого узла является применение полупроводникового элемента, вместо обычно используемого для этих целей приемного трансформатора;

8 - Программируемый усилитель с цифровым управлением, предназначенный для построения зависящей от глубины под килем характеристики усиления отраженных эхосигналов;

9 - Полосовой фильтр, предназначенный для выделения сигнала в рабочей полосе частот перед последующим аналого-цифровым преобразованием;

10 - Аналого-цифровой преобразователь, предназначенный для получения цифровых отчетов эхосигнала по четырем каналам;

11 - Цифровой гетеродин, предназначенный для смещения области рабочих частот эхосигнала с ультразвукового спектра в область низких частот, реализован аппаратно на программируемой логической интегральной схеме (ПЛИС);

12 - Цифровой фильтр с дециматором, необходимые для выделения области рабочих частот и снижения частоты квантования отраженного эхосигнала, реализованы на ПЛИС;

13 - Цифровой сигнальный процессор (DSP), предназначенный для вычисления конечного результата обработки эхосигналов и получения продольной и поперечной скоростей объекта по алгоритму многоальтернативной фильтрации, с использованием банка фильтров Калмана. Блок-схема алгоритма показана на фиг.2. На фиг.1 не показаны такие части вычислительной системы, необходимые для работы DSP процессора, как ОЗУ, ПЗУ, система получения данных после предобработки эхосигналов;

14 - Контроллер интерфейсов UART, предназначенный для организации обмена конечной информацией с потребителем по протоколу NMEA 0183. Реализован в ПЛИС;

15 - Приемопередатчики интерфейсов, предназначенные для согласования уровней сигналов интерфейсов RS-232 и RS-422.

Устройство работает следующим образом.

После включения питания запускается вычислительная система лага, состоящая из DSP-процессора 13 и контроллера интерфейсов 14. Выполняется предпусковой контроль, который включает в себя проверку целостности программного обеспечения, проверку памяти, проверку функционирования приемного тракта методом подачи на вход коммутатора приемных сигналов 6 тестового сигнала. Далее вычислительная система переходит в режим готовности и ожидает прихода внешней команды начала измерения по интерфейсу RS-232 или RS-422 через приемопередатчики 15 и контроллер UART 14. По приходу внешней команды подается силовое питание на усилитель мощности 5 и начинается цикл измерения глубины под килем корабля. Диапазон глубин работы лага разбит на шесть поддиапазонов, в которых происходит последовательный поиск глубины до дна, начиная с самого старшего диапазона. Для поиска глубины до дна формируется зондирующий импульс в усилителе мощности 5, импульс поступает на гидроакустическую антенну 1 через схему согласования антенны 4, коммутатор излучения 3 (который коммутирует необходимую часть антенны 1 в зависимости от текущей глубины под килем), антенный переключатель 2. Эхосигнал, который отражается от дна, поступает обратно на гидроакустическую антенну 1. Время между началом излучения и приемом эхосигнала пропорционально наклонной дальности до грунта.

В фазе приема отраженный сигнал с гидроакустической антенны поступает на антенный переключатель 2, затем на коммутатор приемных сигналов 6, который пропускает сигнал дальше в зависимости от коммутации антенны, затем отраженный сигнал усиливается на дифференциальном приемнике 7. На программируемом усилителе 8 реализована схема временной автоматической регулировки усиления (ВАРУ) в зависимости от предполагаемой глубины до дна на текущем времени поиска. Закон ВАРУ выбран близким к экспоненциальному. После прохождения усилительного тракта, предварительной фильтрации на полосовом фильтре 9 и оцифровки с помощью АЦП 10, а затем гетеродинирования на цифровых гетеродинах 11 на вход цифровых фильтров с дециматором 12 поступают данные со следующих четырех каналов: нос (Н); корма (К); левый борт (ЛБ); правый борт (ПБ).

Постобработка в режиме поиска глубины представляет собой и происходит в DSP-процессоре 13:

- вычисление среднеквадратичных значений (СКЗ) сигнала в приемном тракте;

- поиск максимальных значений СКЗ сигнала для каждого из поддиапазонов;

- сравнение максимальных значений с пороговым (пороговое значение выбирается больше, чем уровень шумовой составляющей сигнала);

- выбор максимального значения, превышающего пороговый уровень (остальные значения, превышающие пороговый уровень, считаются отражением сигнала от звукорассеивающих слоев и могут быть использованы в случае необходимости измерения лагом относительной скорости).

В контроллер интерфейсов UART 14 передается текущее значение глубины под килем.

После окончания цикла поиска глубины система переходит в режим измерения скорости объекта, при этом формирование импульсов излучения и прием отраженных сигналов происходит на тех же устройствах, что и в режиме поиска глубины. В режиме измерения скорости в устройстве:

- формируется зондирующий импульс, длительность которого пропорциональна найденной дальности до грунта (глубине под килем);

- осуществляется прием и усиление эхосигнала (коэффициент усиления на всем протяжении цикла измерения скорости не изменяется и остается соответствующем текущей дальности до грунта);

- выполняется предобработка эхосигнала (гетеродинирование, фильтрация и децимация);

- в DSP-процессоре 13 запускается итерационный алгоритм оценивания скорости объекта с использованием банка фильтров Калмана;

- после того как суммарная длительность эхосигнала составляет не менее 1 сек и одна из апостериорных вероятностей гипотез превышает уровень 0.9, вырабатывается оценка скорости с уровнем среднеквадратической погрешности не более 0.03 узла.

При малых глубинах под килем в одном цикле измерения скорости, формируется несколько зондирующих импульсов, для того чтобы набрать суммарную длительность эхосигнала, равную 1 сек. Для работы на небольших глубинах используется только центральная часть гидроакустической антенны, при работе на больших глубинах используется полная поверхность антенны.

Алгоритм функционирования DSP-процессора при оценивании скорости.

Обработка сигнала по алгоритму многоальтернативной фильтрации с использованием банка фильтров Калмана выполняется в DSP-процессоре. Возможность применения многоальтернативного алгоритма порождена предлагаемым достаточно адекватным описанием эхосигнала на входе приемника (измерения)

где z(t) - марковский узкополосный случайный процесс второго порядка, описывающий эхосигнал; ν(t) - аддитивный белый шум с интенсивностью R, например шум приемника. Спектральная плотность z(t) аппроксимируется следующей дробно-рациональной спектральной плотностью, передающей основные характеристики эхосигнала (наличие доплеровского сдвига частоты, ширина спектра):

где σ2 - дисперсия процесса; α и β - параметры модели, определяющие ширину (α) и центральную частоту спектральной плотности (β).

Эта дробно-рациональная спектральная плотность может быть записана в форме пространства состояний:

где x1, x2 - компоненты вектора состояния; w - порождающий белый шум с интенсивностью Q.

Работа алгоритма многоальтернативной фильтрации поясняется блок-схемой, приведенной на фиг.2. Сигнал y(t) (в дискретном виде yi, т.е. yi=y(ti)), поступает на вход банка фильтров Калмана. Каждый фильтр из банка настроен на аппроксимирующую модель (3) с параметрами αj и βj, соответствующими ожидаемому значению скорости из диапазона неопределенности (диапазон неопределенности параметров дискритизован и разбит на N составляющих). В каждый момент времени (частота дискретизации 25 кГц) с выходов фильтров Калмана из банка в блок выработки апостериорных вероятностей альтернатив (гипотез) передаются значения невязки прогноза и ковариация невязки прогноза (j=1…N). По значениям и рассчитываются апостериорные вероятности наступления события, свидетельствующего, что эхосигнал на входе соответствует модели (3) с параметрами αj и βj. По вычисленным апостериорным вероятностям на каждом шаге дискретизации оценивается скорость движения объекта по среднеквадратическому критерию

где Vj пропорционально βj.

Вышеописанная процедура оценки скорости движения объекта выполняется параллельно для каждого из четырех гидроакустических лучей антенны 1.

Конечным результатом вычислений является продольная (Vx) и поперечная (Vy) составляющие скорости движения объекта, вычисляемые по формулам

где - оценка скорости в носовом направлении объекта; - оценка скорости в кормовом направлении объекта; - оценка скорости в направлении левого борта объекта; - оценка скорости в направлении правого борта объекта.

Далее значения Vx и Vy поступают в контроллер интерфейсов UART 14 и передаются потребителю через приемопередатчики RS-232 и RS-422 (блоки 15).

Гидроакустический доплеровский лаг, содержащий четырехлучевую гидроакустическую антенну, антенный переключатель, коммутатор излучения, схему согласования антенны, усилитель мощности, коммутатор приемных сигналов, дифференциальный приемник, программируемый усилитель, полосовой фильтр, аналого-цифровой преобразователь, цифровой гетеродин, цифровой фильтр с дециматором, контроллер UART, приемопередатчики RS-232 и RS-422, отличающийся тем, что он дополнительно содержит DSP-процессор, на вход которого поступают данные с цифрового фильтра с дециматором от четырех каналов измерения скорости объекта (нос, корма, левый борт, правый борт), с помощью которого реализуется обработка эхосигнала методом многоальтернативной фильтрации, использующей банк фильтров Калмана и направленной на оценку параметра модели эхосигнала, соответствующего значению скорости объекта с предельной погрешностью не более 0,1 узла за время не более 4 с, и выдается результирующие значения скорости объекта через контроллер UART и приемопередатчики RS-232 и RS-422 внешнему потребителю.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для определения скорости течения и направления жидкости в электропроводящих средах, преимущественно в морской воде.

Изобретение относится к гидроакустике и может быть использовано для настройки в натурных условиях приемных каналов гидроакустического доплеровского лага. .

Изобретение относится к области гидроакустики и может быть использовано при калибровке абсолютных и относительных лагов. .

Изобретение относится к области гидроакустики и может быть использовано для измерения параметров движения объектов. .

Изобретение относится к подводной технике и может быть использовано при создании доплеровских измерителей скорости движения объектов относительно дна или среды. .

Изобретение относится к вычислительной технике и может быть использовано в системах обработки локационных сигналов. .

Изобретение относится к области гидроакустики и может быть использовано для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе, относительно горизонта движения носителя

Использование: изобретение относится к области гидроакустики и может быть использовано при разработки гидроакустической аппаратуры, предназначенной для освещения подводной обстановки. Сущность: в способе определения глубины погружения объекта гидролокатором излучают зондирующий сигнал, осуществляют прием эхо-сигнала вертикальной линейной антенной, имеющей узкие характеристики направленности в вертикальной плоскости и широкие характеристиками направленности в горизонтальной плоскости, прием эхо-сигнала горизонтальной линейной антенной, имеющей узкие характеристики направленности в горизонтальной плоскости и широкие характеристики направленности в вертикальной плоскости, прием эхо-сигнала одновременно обеими антеннами, измерение дистанции и направления прихода эхо-сигнала, при совпадении измеренных дистанций определяется характеристика направленности в вертикальной плоскости, определяется угол места по отклонению положения этой характеристики от направления верхней горизонтальной характеристики и определяют глубину погружения относительно глубины погружения излучателя по формуле Ноб=Dверт Sin(α), где Dверт - измеренная дистанция до цели, α - угол между характеристикой в вертикальной плоскости, в котором обнаружен эхо-сигнал от цели и направлением движения носителя, измеряют глубину погружения гидролокатора Нгл, а глубина погружения объекта определяется Н=Ноб+Нгл. Технический результат: измерение глубины погружения объекта при любой глубине места подводным гидролокатором, в том числе при малой глубине места. 1 ил.

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации обнаруженных объектов гидролокатором освещения ближней обстановки. Использование способа позволит повысить вероятность правильной классификации. Способ содержит излучение зондирующего сигнала, прием эхо-сигналов статическим веером характеристик направленности, цифровую обработку принятого сигнала, определение уровня помехи, вычисление порога, определение превышения выбранного порога обнаружения последовательно по всем пространственным каналам статического веера характеристик направленности, измерение и запоминание амплитуды и номера отсчетов, превысивших порог обнаружения, измерение дистанции, выбор соседних пространственных каналов, в которых произошло превышение порога, определение временной протяженности эхо-сигнала в этих каналах ΔTi, где i - номер канала, по каждому каналу i определяют временное положение момента начала огибающей эхо-сигнала Т, определяют разность времен между моментами начала измеренных эхо-сигналов в соседних пространственных каналах Ti+1-Ti, по известной ширине характеристики направленности одного пространственного канала α и измеренной дистанции Дизм определяют инструментальную тангенциальную протяженность эхо-сигнала по формуле К=Дизм sinα, определяют курсовой угол положения объекта по формуле β=arctg С(Ti+1-Ti)/K, где С - скорость звука, определяют радиальную протяженность объекта последовательным суммирование оценок радиальной протяженности в тех последовательных пространственных каналах, в которых произошло превышение порога ΣΔTi, определяют полную протяженность объекта по формуле Lполн.=Lрад/sinβ, где Lрад=CΣΔTi, которая сравнивается с порогом для проведении классификации. 1 ил.

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения высоты объекта над уровнем дна. Сущность: гидроакустический способ определения пространственных характеристик объекта, содержащий излучение зондирующего сигнала в момент времени t, приема эхосигнала tэхо, определяется дистанция D до объекта по величине временной задержки и известной скорости распространения звука С, после излучения измеряют уровень объемной реверберации U0, определяют порог обнаружения Uпор., измеряют tнач время начала эхосигнала, при котором впервые амплитуда эхосигнала Аоб превысила порог Аоб>Uпор и определяют дистанцию D0=0,5 С tнач, измеряют момент времени последней амплитуды эхосигнала tпос, при котором минимальная амплитуда эхосигнала от объекта Аоб>Uпор, определяют момент времени начала тени tтени, при котором выполняется условие U0≥Атен и tтени>tпос, определяют момент времени окончания тени tкон.т, при котором Uпор>Аоб≥U0, определяют дистанцию до момента окончания тени Dтени=0,5 С tкон.т, определяют глубину от гидролокатора до дна Hдна, а высоту объекта определяют по формуле . Технический результат: определение высоты обнаружения объекта над уровнем дна по одной посылке. 2 ил.

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения параметров положения объекта, обнаруженного на дне с использованием гидролокатора ближнего действия. Способ содержит излучение зондирующего сигнала в момент времени t, после излучения измеряется уровень объемной реверберации U0, определяется порог обнаружения Uпор эхосигнала, определяется дистанция до объекта D по величине временной задержки и известной скорости распространения звука С, по превышению эхосигналом от дна порога обнаружения определяют время распространения сигнала до дна tдна и дистанцию от гидролокатора до дна Ндна=0,5С tдна, измеряют tнач время начала прихода эхосигнала, при котором произошло первое превышение порога, определяют дистанцию D1=0,5С tнач, измеряют момент окончания эхосигнала tпос, когда произошло последнее превышение порога, определяют дистанцию Dпос=0,5С tпос, определяют момент времени начала тени tтениН при Uпор≥Aэхс.тен больше амплитуды эхосигнала Aэхс.тен, определяют момент времени окончания тени tтениК, при котором амплитуда эхосигнала Aэхс.К>Uпор, и определяют дистанцию до момента окончания тени Dтени=0,5C tтениК., определяют горизонтальную дистанцию до начала объекта на дне D г о р 1. 2 = D 1 2 − H д н а . 2 , определяют горизонтальную дистанцию до конца тени D г о р . т е н и 2 = D т е н и 2 − H д н а . 2 , определяют высоту последней отражающей точки объекта Ноб=δНдна/Dтени, определяют длину L стороны объекта на дне, обращенной к гидролокатору, по формуле: L = d 2 + δ 2 − 2 d δ ( 1 − ( H д н а D т е н и ) 2 , где d=Dгор.тени-Dгор.1, δ=Dтени-Dпос, а угол наклона Q° объекта относительно дна определяют как Q°=arcsin δ Ндна/DтениL. Технический результат: определение протяженности объекта на дне и угла его наклона по отношению к дну по одной посылке. 2 ил.

Изобретение относится к области морской навигации и судовождения по ведущему кабелю, а также к подводным навигационным системам с гидроакустическими маяками-ответчиками, и может быть использовано для разработки технических средств навигационного обеспечения, связи и управления надводных и подводных объектов навигации в стесненных условиях плавания, преимущественно в арктических и прилегающих к ним акваториях, в частности на Северном морском пути (СМП). Система содержит проложенный по дну ведущий кабель, береговой генератор тока и судовую аппаратуру. Дополнительно вдоль трассы кабеля установлены, по меньшей мере, два гидроакустических маяка с различающимися частотами излучения импульсных сигналов, синхронизированных по тому же кабелю. Судовая аппаратура выполнена с возможностью определения положения объекта вдоль кабеля по гиперболическим изолиниям, соответствующим измеренным разностям времен прохождения сигналов от пары гидроакустических маяков, координаты которых заведомо известны. Технический результат, достигаемый при реализации разработанной системы навигации, состоит в повышении точности и безопасности судовождения на СМП при необходимом навигационном обеспечении, связи и управлении ледокольной и лоцманской проводкой судов и отдельных объектов навигации на наиболее сложных и ответственных его участках. 5 з.п. ф-лы, 6 ил.

Изобретение относится к медицинской технике, а именно к ультразвуковым системам диагностической визуализации. Система формирует отображения спектральной допплерографии потока для анатомических местоположений, выбранных из изображения от цветового картирования потока и содержит зонд с массивом ультразвуковых преобразователей, формирователь лучей, который управляет направлениями, в которых лучи передаются зондом, допплеровский процессор, дисплей, на котором одновременно отображаются изображения цветового допплеровского картирования потока и спектральной допплерографии, пользовательский элемент управления, процессор положения и угла отклонения цветовой рамки, реагирующий на допплеровские сигналы для автоматического изменения положения цветовой рамки в изображении цветового допплеровского картирования потока относительно потока в кровеносном сосуде, когда пользователь манипулирует элементом управления, осуществляя перемещение из одного указанного положения в другое. Использование изобретения позволяет снизить трудоемкость регулировки. 12 з.п. ф-лы, 10 ил.
Наверх