Способ плазменного анодирования металлического или полупроводникового объекта

Изобретение относится к технологии выращивания оксидных слоев и может быть использовано при создании защитных либо пассивирующих покрытий на поверхности металла или полупроводника. Сущность изобретения: в способе плазменного анодирования металлического или полупроводникового объекта проводят операции откачки рабочей камеры, напуска кислорода, создания плазмы пучком электронов, проходящим вблизи поверхности объекта. Напротив анодируемого объекта располагают полый катод, подают на него отрицательное относительно объекта напряжение 20-50 В, и анодирование проводят при давлении кислорода 5÷20 Па. Изобретение обеспечивает увеличение скорости роста оксидных слоев на поверхности металлических или полупроводниковых объектов, при сохранении бездефектной структуры слоев. 1 ил.

 

Изобретение относится к обработке материалов, а именно к технологии выращивания оксидных слоев, и может быть использовано при создании защитных либо пассивирующих покрытий на поверхности металла, либо полупроводника.

Известен способ создания оксидных покрытий на металлическом или полупроводниковом объекте путем обработки в кислородной плазме, включающий операции создания плазмы в тлеющем разряде и подачи положительного смещения на обрабатываемый объект (патент США US 3,394,066 Method of Anodizing by Applying a Positive potential to a Body Immersed in Plasma). В этом способе объект используется в качестве анода разрядной системы, что может вызывать значительное (до сотен вольт) неконтролируемое падение напряжения на растущем оксидном слое и, как следствие, его пробой и образование дефектов. Кроме этого, возможна бомбардировка исходного объекта и растущего оксидного слоя высокоэнергетичными заряженными частицами, что не всегда приемлемо, в особенности, если создается диэлектрический оксидный слой на полупроводниковой пластине. К недостаткам способа следует отнести также возможность попадания в растущую окисную пленку материала катода вследствие ионного распыления.

Известен также способ анодирования металлических или полупроводниковых поверхностей в плазме высокочастотного (ВЧ) разряда в кислороде [патент США US 3,476,971 Apparatus for Plasma Processing]. В этом способе разделены цепи питания разряда и подачи смещения на обрабатываемый объект. За счет этого удается контролировать напряжение на оксидном слое и предотвращать его пробои. Вместе с тем, в силу того, что плазма ВЧ-разряда не локализована, бомбардировка оксидного слоя высокоэнергетичными заряженными частицами имеет место. Кроме электрических последствий, связанных с накоплением поверхностного заряда на полупроводнике, эта бомбардировка вызывает неконтролируемый нагрев обрабатываемого объекта.

Наиболее близким по технической сущности к предлагаемому изобретению является усиленная электронным пучком система азотирования (Electron beam enhanced nitriding system, патент США US 2009/0032143 A1). Система и соответствующий способ предполагают создание плазмы активного газа путем ионизации электронным пучком и подачу на обрабатываемый объект отрицательного смещения порядка 350 В. Использование электронного пучка позволяет создать резкую границу плазмы, а следовательно, снизить бомбардировку поверхности объекта высокоэнергетичными частицами и уменьшить вероятность образования дефектов. Однако, при использовании указанной системы для создания окисных слоев скорости роста оказываются низкими (менее 0,5 нм/мин для SiO2), и по этой причине система становится малопригодной для реализации в технологии создания защитных или пассивирующих покрытий. Причина, обусловливающая столь низкие скорости, состоит в сравнительно низкой концентрации плазмы и малой реакционной способности положительных ионов кислорода. Увеличение концентрации плазмы повышением тока электронного пучка оказывается неэффективным, поскольку в силу известных физических ограничений повышение тока требует увеличения ускоряющего напряжения, что, в свою очередь, сопровождается снижением сечения ионизации газа.

Цель настоящего изобретения состоит в увеличении скорости роста окисного слоя при сохранении его бездефектной структуры. Указанная цель достигается тем, что помещенный в вакуумную камеру обрабатываемый металлический или полупроводниковый объект электрически соединяют с ее стенками. Напротив объекта располагают полый катод, после чего камеру откачивают и напускают в нее кислород до давления 5-20 Па. Включают электронный источник и направляют электронный пучок параллельно объекту между ним и полым катодом, после чего на полый катод подают отрицательное смещение 20÷50 В относительно объекта. В приведенном способе электронный пучок играет роль предварительного ионизатора и обеспечивает зажигание разряда с полым катодом при указанных сравнительно низких напряжениях. Эти напряжения тем не менее оказываются достаточными для повышения концентрации плазмы на порядок. Совокупность и последовательность изложенных операций обеспечивает выращивание бездефектного оксида кремния со скоростью до 10 нм/мин. Интервал значений смещения оказывается существенным для достижения цели изобретения. При напряжениях, меньших 20 В, разряд с полым катодом не возбуждается, а при превышении величины 50 В в растущей пленке окисла обнаруживаются следы пробоев. Интервал давлений кислорода также имеет существенное значение, поскольку при давлениях менее 5 Па разряд с полым катодом не возбуждается, а при увеличении давления свыше 20 Па электронный пучок не удается сфокусировать, и он попадает на объект и растущую пленку, вызывая образование дефектов.

На чертеже изображена схема реализации предлагаемого способа плазменного анодирования металлического или полупроводникового объекта. Анодируемый объект 1 в виде пластины, закрепленный на держателе образца 2, помещают в вакуумную камеру 3. Напротив объекта располагают полый катод 4. Плазменный источник электронов 5 формирует электронный пучок 6, создающий кислородную плазму 7. Пучок распространяется между анодируемым объектом 1 и полым катодом 4, после чего улавливается коллектором 8. Напряжение Uсм подается на полый катод от отдельного источника. Это напряжение обеспечивает зажигание разряда с полым катодом, плазма 9 которого и становится поставщиком отрицательных ионов кислорода, осуществляющих формирование слоя окисла на поверхности объекта.

Пример. Для испытания была взята пластина собственного кремния размерами 30×30 мм2 и установлена на держатель. Напротив пластины располагался полый катод с диаметром полости 25 мм и глубиной 80 мм, причем апертура полости была обращена к пластине кремния. Расстояние от полого катода до кремниевой пластины составляло 10 мм. Кремниевая пластина и полый катод помещались в вакуумную камеру, которая откачивалась до давления 3÷5 Па. После этого в вакуумную камеру напускался кислород до давления 20 Па. Промывка вакуумной камеры кислородом осуществлялась в течение 20 мин. Далее включался плазменный источник электронов. Сфокусированный электронный пучок направлялся в пространство между образцом и полым катодом. Ток пучка составлял 15 мА, а энергия электронов - 4 кэВ. При подаче отрицательного смещения на полый катод, тлеющий разряд с полым катодом возбуждался при напряжении смещения 20 В. Анодирование осуществлялось в течение 1 часа при напряжении смещения 50 В. При этом плотность тока на анодируемый образец составляла в начале процесса 1,5 мА/см2 и уменьшалась до 0,9 мА/см2 в конце процесса. На поверхности кремния сформировалась пленка SiO2, что подтверждается наличием максимума на частоте 1100 см-1 в ИК-спектре поглощения, и значением показателя преломления, равным 1,45. Толщина пленки SiO2 составила 400 нм. Измерение толщины и показателя преломления производилось с помощью эллипсометра "Эллипс-2228СЭ", ИК-спектры измерялись спектрометром "Infralum FT-800". При наблюдении поверхности пленок в сканирующем электронном микроскопе "Hitachi TM-1000" с увеличением ×10000 дефекты обнаружены не были.

Способ плазменного анодирования металлического или полупроводникового объекта, включающий операции откачки рабочей камеры, напуска кислорода, создания плазмы пучком электронов, проходящим вблизи поверхности объекта, отличающийся тем, что напротив анодируемого объекта располагают полый катод, подают на него отрицательное относительно объекта напряжение 20-50 В и анодирование проводят при давлении кислорода 5÷20 Па.



 

Похожие патенты:
Изобретение относится к технологии получения защитных пленок полупроводниковых приборов и интегральных схем. .

Изобретение относится к технологии арсенид-галлиевой микроэлектроники, в частности к методам электрической пассивации поверхности полупроводниковых соединений и твердых растворов групп АIIIBV, и может быть использовано для снижения плотности поверхностных состояний как на свободной поверхности полупроводника, так и на границе раздела металл-полупроводник и диэлектрик-полупроводник.
Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленок, содержащих бор на поверхности полупроводниковых материалов.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленочных диэлектриков, для маскирования поверхности кремниевых пластин при проведении диффузионных процессов.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения защитных пленок. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления пленок с пониженной дефектностью. .
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения тонкопленочных конденсаторов. .

Изобретение относится к технологии осаждения диоксида кремния на подложке из раствора при низких температурах таким образом, чтобы получить гомогенный рост диоксида кремния.
Изобретение относится к области технологии полупроводниковых приборов. .

Изобретение относится к технологии получения полупроводниковых приборов и может быть использовано в производстве твердотельных газовых датчиков паров углеводородов
Изобретение относится к технологии изготовления мощных транзисторов, в частности к методам получения защитных пленок для формирования активных областей p-n переходов
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур, с пониженной плотностью дефектов

Изобретение относится к технологии полупроводниковой микро- и наноэлектроники, а именно к золь-гель технологии получения сегнетоэлектрических тонких стронций-висмут-тантал-оксидных пленок на интегральных микросхемах, применяемых в частности в устройствах энергонезависимой памяти типа FRAM. Техническим результатом изобретения является обеспечение однородности изготавливаемой сегнетоэлектрической пленки, упрощение контроля над процессом приготовления золя и увеличение срока хранения исходного золя, снижение энергоемкости процесса и снижение его стоимости. В золь-гель способе формирования сегнетоэлектрической стронций-висмут-тантал-оксидной пленки готовят исходные растворы хлорида стронция, хлорида висмута и хлорида тантала. Каждый полученный раствор подвергают ультразвуковой обработке в течение 20-40 минут, выдерживают в течение суток при комнатной температуре и фильтруют. Смешивают растворы в один и выдерживают его в течение суток при комнатной температуре. Образуется пленкообразующий раствор, который наносят на подложку, сушат подложку с нанесенным пленкообразующим раствором при температуре 50-450°С и отжигают пленку в присутствии кислорода при температуре 700-800°С в течение 1-2 часов. В результате получают сегнетоэлектрическую стронций-висмут-тантал оксидную пленку. 5 ил.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности p-n-переходов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса. В способе защиты p-n-переходов на основе окиси бериллия защита поверхности p-n-переходов осуществляется на основе пленки окиси бериллия вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре 1000°C, температура кристалла 600°С. Окись бериллия в виде порошка, а в качестве несущего агента используется галоген HBr. Устанавливается перепад температур между источником окиси бериллия и полупроводниковым кристаллом. Расстояние между источником окиси бериллия и кристаллом равно 12 см. Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки окиси бериллия δ=0,8±0,1 мкм.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты кристаллов p-n-переходов. Техническим результатом изобретения является достижение стабильности и уменьшение температуры и длительности процесса. В способе защиты поверхности кристаллов p-n переходов на поверхность кристалла наносят слой защитного стекла, состоящего из смеси микропорошков со спиртом, в состав которого входят: 60% окиси кремния - SiO2 и 28% окиси бора - B2O3. После термообработки в вакууме при температуре 280±10°C в течение 18±2 минут образуется стеклообразная пленка толщиной 0,45±0,5 мкм. Далее производится ее сплавление с нижним слоем стекла при температуре 600°C.
Использование: для получения мощных кремниевых транзисторов, в частности к способам получения фосфоро-силикатных стекол для формирования p-n переходов. Сущность изобретения заключается в том, что кремниевые пластины загружают в кварцевую лодочку, помещенную в кварцевую трубу, находящуюся внутри нагретой однозонной печи СДОМ-3/100. Через трубу пропускается поток газа носителя - водород (H2), а фосфорный ангидрид (P2O5) помещают в зону источника и нагревают до температуры 300°C, при которой происходит испарение источника. Процесс проводят при следующем расходе газов: О2=40 л/ч, азот N2=500 л/ч. Технический результат: обеспечение возможности осуществления процесса диффузии фосфора с применением твердого источника диффузанта - фосфорный ангидрид (P2O5) при температуре 1050°C и времени - 40 минут, и получить RS=140±10 Ом/см, при котором обеспечивается уменьшение разброса значений поверхностной концентрации по всей поверхности кремниевой пластины и снижение длительности и температуры процесса.

Изобретение относится к технологии микроэлектроники. В способе получения слоя диоксида кремния, включающем загрузку полупроводниковой подложки в реактор, нагрев полупроводниковой подложки до необходимой температуры в диапазоне 300-500°C, подачу паров алкоксисилана, преимущественно - тетраэтоксисилана, и окислителя в виде смеси кислорода и озона, с концентрацией последнего в первом в диапазоне 0-16 вес.%, поддержание рабочего давления в реакторе в диапазоне 0,5-760 мм рт.ст., процесс осаждения осуществляют циклами, состоящими из последовательных импульсов паров алкоксисилана и окислителя, разделенными импульсами продувочного инертного газа, причем длительность импульсов составляет 0,1-20 секунд, а количество циклов рассчитывают из необходимой толщины слоя и скорости осаждения слоя диоксида кремния за один цикл. Изобретение позволяет обеспечить равномерный рост слоев диоксида кремния в условиях реализации процесса, исключающего взаимодействие исходных реагентов или их непрореагировавших остатков в реакторе, и обеспечивает взаимодействие реагентов на нагретой поверхности подложки в адсорбционном слое. 7 ил., 1 табл.

Изобретение относится к области низкотемпературных технологий микро- и наноэлектроники и может быть использовано для создания радиационно-стойких интегральных схем и силовых полупроводниковых приборов. Оксид кремния получают путем нагрева кремния в атмосфере кислорода до температуры 250-400°C потоком электронов плотностью в интервале 2,5·1013-1014 см-2·с-1 с энергией 3,5-11 МэВ. Технический результат изобретения состоит в получении высококачественных низкотемпературных оксидов кремния с характерными для высокотемпературных термических оксидов параметрами: плотностью поверхностных состояний (Nss менее 1011 см-2), максимальной величиной критического поля (Екр более 2·105 В/см), минимальным разбросом пороговых напряжений (∆Vt менее 0,1 В) и повышенной радиационной стойкостью (более 106 рад). 1 ил.
Изобретение относится к технологии получения полупроводниковых приборов и интегральных схем, в частности к способам формирования диэлектрических пленок на основе окиси титана. Изобретение позволяет сформировать на поверхности подложки диэлектрическую пленку окиси титана при низких температурах. В способе формирования диэлектрической пленки для защиты поверхности р-n-переходов формирование диэлектрической пленки окиси титана осуществляется на поверхности подложек в печи вакуумным катодным распылением при температуре 800°С и температуре подложки 500°С. В качестве несущего агента служит галоген НВr. Расстояние между источником окиси титана и подложкой 9 см. Толщина формируемой диэлектрической пленки окиси титана 0,7±0,1 мкм.
Наверх