Резонансный свч компрессор


 


Владельцы патента RU 2440647:

Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Резонансный СВЧ компрессор предназначен для формирования мощных СВЧ импульсов наносекундной длительности. Устройство содержит симметричный одномодовый накопительный резонатор, ограниченный короткозамыкателями, СВЧ коммутатор и элементы ввода и вывода энергии на основе волноводных тройников. Элемент ввода энергии, расположенный по центру резонатора, выполнен в виде Н-тройника. Элемент вывода энергии выполнен на основе двух Н-тройников, компланарных с Н-тройником элемента ввода, включенных симметрично в короткозамкнутые плечи резонатора на расстоянии nλв/2 от соответствующего короткозамыкателя. К выходным плечам Н-тройников элемента вывода симметрично подсоединен выходной суммирующий Н-тройник. СВЧ коммутатор размещен в центре резонатора, длина которого составляет (4n+1)λв/2. Технический результат заключается в существенном увеличении мощности сигналов за счет уменьшения времени вывода накопленной энергии. 1 ил.

 

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ импульсов наносекундной длительности.

Известен ряд оригинальных конструкций резонансных СВЧ компрессоров, работающих на основе накопления и быстрого вывода СВЧ энергии в резонансном объеме [А.Н.Диденко, Ю.Г.Юшков. Мощные СВЧ-импульсы наносекундной длительности. М.: Энергоатомиздат, 1984, с.112]. Наиболее распространенными среди них являются компрессоры, накопительный объем которых выполнен из одномодового прямоугольного либо круглого волновода, а устройство вывода организовано на основе интерференционного переключателя в виде Т-образного волноводного Н-тройника [Р.Альварец, Д.Биркс, Д.Берн, Е.Лауэр, Д.Скалапино. Сжатие СВЧ-энергии во времени для использования в ускорителях заряженных частиц. Атомная техника за рубежом, 1982, №11, с.36-39]. Одно из прямых плеч такого переключателя используется в качестве накопительного объема и имеет длину nλв/2, где n>>1, λв - длина волны в волноводе. Второе прямое либо боковое плечо выполняется полуволновым и ограничивается короткозамыкателем. В этом плече на расстоянии λв/4 от короткозамыкателя размещается СВЧ коммутатор, соединенный с источником управляющих сигналов. Свободное плечо связывается с нагрузкой и через него осуществляется вывод энергии. Мощность выходных сигналов СВЧ компрессоров с выводом энергии через интерференционный переключатель определяется электрической прочностью коммутатора. В таких устройствах коммутируемая мощность практически равна мощности бегущей волны накопительного резонатора, т.е. предельной мощности выходных сигналов компрессора. Например, в 10-см диапазоне длин волн этот уровень не превышает 400-500 МВт [В.А.Августинович, С.Н.Артеменко, В.Ф.Дьяченко, В.Л.Каминский, С.А.Новиков, Ю.Г.Юшков. Исследование переключателя СВЧ компрессора с коммутацией в круглом волноводе. ПТЭ, 2009, №4, с.106-109]. Из-за потерь при коммутации он снижается до 250-300 МВт.

С целью увеличения мощности сигналов при неизменном уровне коммутируемой мощности предложен [R.A.Alvarez, D.P.Byrne, R.M.Johnson. Prepulse suppression in microwave pulse-compression cavities. Review Scientific Instruments, v.57, №10, p.2475-2480]. СВЧ компрессор с симметричным одномодовым накопительным резонатором длиной nλв, ограниченным короткозамыкателями и устройством ввода-вывода энергии на основе волноводных тройников в центральной части резонатора. Ввод энергии осуществляется через элемент ввода на основе Е-тройника, а вывод - через элемент вывода на основе Н-тройника. СВЧ коммутатор размещается в одном из плеч накопительного резонатора на расстоянии λв/4 от короткозамыкателя этого плеча. Такое исполнение устройства позволяет выводить энергию одновременно из двух плеч резонатора. В случае коммутации без потерь это может обеспечить двукратное увеличение мощности выходного сигнала по сравнению с мощностью бегущей волны резонатора при пропорциональном укорочении сигнала по сравнению с временем двойного пробега рабочей волны вдоль резонатора. Поэтому в реальном СВЧ компрессоре с симметричным накопительным резонатором мощность выходных сигналов, например, в 10-см диапазоне, в принципе, может быть увеличена до 500-600 МВт. По технической сущности такой компрессор наиболее близок к предлагаемому устройству и взят за прототип.

Задачей предлагаемого изобретения является создание СВЧ компрессора, обеспечивающего повышение рабочей мощности выходных сигналов.

Технический результат, достигаемый изобретением, заключается в увеличении мощности сигналов за счет уменьшения времени вывода накопленной энергии.

Указанный результат достигается тем, что в резонансном СВЧ компрессоре, содержащем, как и прототип, симметричный одномодовый накопительный резонатор, ограниченный короткозамыкателями, СВЧ коммутатор и элементы ввода и вывода энергии на основе волноводных тройников, при этом элемент ввода энергии расположен по центру резонатора, согласно изобретению элемент ввода энергии выполнен в виде Н-тройника, элемент вывода энергии выполнен на основе двух Н-тройников, компланарных с Н-тройником элемента ввода, включенных симметрично в короткозамкнутые плечи резонатора на расстоянии nλв/2 от соответствующего короткозамыкателя, к выходным плечам Н-тройников элемента вывода симметрично подсоединен выходной суммирующий Н-тройник, а СВЧ коммутатор размещен в центре резонатора, длина которого составляет (4n+1)λв/2.

На чертеже представлена схема предложенного СВЧ компрессора.

СВЧ компрессор содержит симметричный одномодовый накопительный резонатор 1 длиной (4n+1)λв/2 с плечами, ограниченными короткозамыкателями 2, и с элементом ввода энергии 3, который выполнен со стороны бокового плеча Н-тройника 4, расположенного по центру резонатора. Компрессор содержит элемент вывода энергии 5, организованный на основе двух Н-тройников 6, компланарных с входным Н-тройником 4 и включенных симметрично в плечи накопительного резонатора на расстоянии nλв/2 от короткозамыкателя 2 соответствующего плеча. К выходам тройников 6 симметрично подсоединен суммирующий Н-тройник 7, являющийся составной частью элемента вывода 4. Коммутатор 8 СВЧ компрессора расположен в центре резонатора и делит резонатор на две равные части, а в сочетании с элементами вывода - на четыре практически равные части.

Резонансный СВЧ компрессор работает следующим образом. В одномодовом резонаторе 1 через элемент ввода энергии 3 накапливается СВЧ энергия. Так как выходные волноводы Н-тройников 6 в режиме накопления расположены в узлах стоячей волны резонатора, то в режиме накопления энергия в эти волноводы не поступает. После завершения процесса накопления включается СВЧ коммутатор 8 (например, зажигается плазма газового СВЧ разряда), который расположен в максимуме электрической составляющей поля в центральном варианте рабочей моды резонатора. В результате фаза волны слева и справа от коммутатора меняется на 180°. Волны с инвертированной фазой распространяются от центра резонатора в сторону выходных волноводов Н-тройников 6. В момент их прихода к выходным волноводам тройников 6 в плоскости симметрии тройников устанавливается пучность стоячей волны резонатора, и резонатор открывается, т.к. оказывается сильно связанным с выходными волноводами этих тройников. В результате накопленная энергия поступает в выходные волноводы и начинается процесс вывода энергии. Этот процесс продолжается до тех пор, пока со стороны короткозамыкателей 2 к выходным волноводам тройников 6 поступает волна. Время поступления равно времени двойного пробега волны от короткозамыкателя каждого плеча до выходного волновода ближайшего к короткозамыкателю тройника 6. Поскольку это время равно времени пробега волны от коммутатора до выходных волноводов Н-тройников 6 и равно четвертой части времени пробега вдоль всего резонатора, то через такой промежуток времени энергия из резонатора выводится полностью в выходные (боковые) плечи тройников 6. При этом волны из этих плеч поступают в прямые плечи Н-тройника 7 и в этом тройнике суммируются. Такое развитие процесса вывода обусловлено известным свойством Н-тройников, согласованных со стороны бокового плеча. Оно заключается в полном суммировании синфазных волн одинаковой амплитуды, подводимых к Н-тройнику через его прямые плечи. Поскольку переключение из режима накопления в режим вывода осуществляется одним коммутатором, то процесс вывода через два тройника осуществляется синхронно и синфазно, что обеспечивает практически полное суммирование в выходном Н-тройнике 7. Таким образом, энергия выводится за время, в четыре раза меньшее времени двойного пробега волны вдоль резонатора, что обеспечивает четырехкратное повышение мощности выходного сигнала по сравнению с мощностью бегущей волны резонатора. Как отмечалось выше, в прототипе возможное повышение мощности равно двум.

В качестве примера рассмотрим исследованный СВЧ компрессор 10-см диапазона длин волн. Для накопления энергии использовался цилиндрический резонатор диаметром 90 мм, работавший на частоте 2804 МГц на H11(25) моде колебаний. Входной Н-тройник, как и выходные, также был изготовлен из круглого волновода диаметром 90 мм. Длина резонатора равнялась 1860 мм, а расчетное время двойного пробега на рабочей частоте составляло ~17.3 нс. Выходные Н-тройники располагались на расстоянии 440 мм от короткозамыкателей соответствующих плеч резонатора и на расстоянии 474 мм от центра резонатора. Измеренная добротность резонатора на рабочей моде равнялась 3.1×104. Энергия накапливалась от импульсного магнетрона мощностью 2 МВт с длительностью импульсов 3.2 мкс. При такой длительности и оптимальной входной связи расчетная эффективность накопления составляет 0.41. Таким образом, в резонаторе накапливалось около 2.6 Дж СВЧ энергии. При таком запасе энергии мощность бегущей волны резонатора достигает ~150 МВт, а коэффициент усиления составляет ~18.8 дБ. Это означает, что в случае коммутации без потерь на выходе системы можно получать сигналы мощностью ~600 МВт, длительностью ~4.3 нс и усилением ~24.8 дБ. Переключение резонатора из режима накопления в режим вывода осуществлялось СВЧ коммутатором, который располагался в центре резонатора по диаметру волновода. В этом месте находится максимум электрической составляющей поля в центральном варианте рабочей моды. Коммутатор представлял собой продуваемую кварцевую трубку с внутренним диаметром 12 мм и наружным 14 мм. Ориентация трубки совпадала с плоскостью поляризации рабочей моды резонатора. Со стороны одного из торцов трубки монтировался электрический разрядник, обеспечивающий подсветку разрядного промежутка коммутатора. Кроме того, к торцам трубки подсоединялись трубопроводы системы продува разрядного промежутка. Резонатор заполнялся азотом под избыточным давлением 5-5.5 ати с добавлением 15-20% элегаза. Разряд в трубке происходил в аргоне под давлением ~3.5-4 ати с добавлением 7-10% элегаза либо чистом аргоне под давлением около 5 ати. При таком давлении в трубке обеспечивалась стабильная работа коммутатора практически без сбросов на самопробой. В принципе, система работала идентично компрессору с выводом энергии через интерференционный переключатель на основе Н-тройника из круглого волновода. Причем она работала достаточно эффективно как при коммутации в аргоне, так и в смеси аргона с элегазом. Однако наиболее эффективно она работала при коммутации в чистом аргоне. Измеренный коэффициент усиления по каждому из выходов при коммутации в аргоне с элегазом составил около 19 дБ. Таким образом, мощность выходных сигналов по каждому из выходов в этом случае составляла ~160 МВт. Длительность сигналов равнялась 3.8 нс. Суммирование сигналов в тройнике приводило к некоторому увеличению их длительности и незначительному снижению усиления. Скорее всего, это связано с неидеальным согласованием суммирующего тройника и возможным отличием длины волноводных трактов от выходов компрессора до места суммирования. Максимальная суммарная мощность при коммутации в смеси аргона с элегазом достигала ~ 300 МВт. Усиление составляло ~22 дБ, а длительность равнялась ~4.3 нс. Так как управление выводом осуществлялось одним СВЧ коммутатором, то это исключало проблемы с суммированием. Таким образом, при коммутации в смеси аргона с элегазом получено только двукратное умножение мощности выходных сигналов по сравнению с мощностью бегущей резонатора. Это, очевидно, связано с относительно низкой напряженность поля в резонаторе и, соответственно, более заметными потерями при коммутации. Для снижения потерь требуется повышение мощности входного сигнала.

При коммутации в чистом аргоне зафиксировано усиление ~20 дБ и мощность ~200 МВт по каждому из выходов системы, что соответствует усилению суммарных сигналов ~23 дБ и суммарной мощности ~400 МВт. Таким образом, на чистом аргоне получено умножение мощности, близкое к трехкратному его значению. Коммутация в аргоне была возможна также в силу относительно низкой напряженности поля в резонаторе из-за достаточно большого его объема. Вместе с тем, она была более эффективной в силу более хороших коммутационных характеристик аргона по сравнению со смесью аргона с элегазом. Для повышения уровня коммутируемой мощности до предельно допустимой величины ~500 МВт требуется увеличение запаса энергии во входном импульсе в два-три раза. В этом случае система будет способна формировать сигналы с уровнем мощности порядка 1 ГВт.

Резонансный СВЧ компрессор, содержащий симметричный одномодовый накопительный резонатор, ограниченный короткозамыкателями, СВЧ коммутатор и элементы ввода и вывода энергии на основе волноводных тройников, при этом элемент ввода энергии расположен по центру резонатора, отличающийся тем, что элемент ввода энергии выполнен в виде Н-тройника, элемент вывода энергии выполнен на основе двух Н-тройников, компланарных с Н-тройником элемента ввода, включенных симметрично в короткозамкнутые плечи резонатора на расстоянии nλв/2 от соответствующего короткозамыкателя, к выходным плечам Н-тройников элемента вывода симметрично подсоединен выходной суммирующий Н-тройник, а СВЧ коммутатор размещен в центре резонатора, длина которого составляет (4n+1)λв/2.



 

Похожие патенты:

Свч-фильтр // 2316087
Изобретение относится к области СВЧ-техники и предназначено для использования в различных радиотехнических устройствах, преимущественно в радиотехнических устройствах космических аппаратов.

Изобретение относится к электронной СВЧ-технике, а именно к объемным СВЧ-резонаторам, в частности, для приборов О-типа, например клистронов. .

Изобретение относится к области светотехники и техники СВЧ. .

Изобретение относится к СВЧ технике и может быть использовано в конструкциях резонансных СВЧ блоков на основе цилиндрических резонаторов с Н111 типом колебаний, сопрягаемых с прямоугольными волноводами, в частности, сантиметрового диапазона длин волн в атомно-лучевых стандартах частоты.

Изобретение относится к области техники сверхвысоких частот (СВЧ) и светотехники. .

Изобретение относится к способам перестройки объемных резонаторов и может быть использовано в технике СВЧ измерений и в радиоизмерительной аппаратуре, в частности в перестраиваемых генераторах СВЧ.

Изобретение относится к области светотехники и техники сверхвысоких частот. .

Изобретение относится к криогенной технике и может быть использовано при изготовлении сверхпроводящих изделий, в частности высокочастотных объемных резонаторов, волноводов, линий задержки и т.п

Изобретение относится к волноводным детекторам СВЧ, применяемым, в частности, в охранных извещателях радиотехнического принципа действия микроволнового диапазона радиоволн

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ импульсов наносекундной длительности

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ импульсов наносекундной длительности

Изобретение относится к области радиотехники и предназначено для формирования серии мощных СВЧ импульсов субнаносекундной длительности с высокой частотой следования в пределах входного микросекундного СВЧ импульса, генерируемого в частотно-периодическом режиме

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности. Технический результат - увеличение мощности выходных сигналов компрессора за счет увеличения объема накопительного резонатора и количества каналов вывода энергии. Резонансный СВЧ-компрессор, содержащий накопительный резонатор, ограниченный короткозамыкателями, СВЧ-коммутатор с газоразрядной трубкой, устройство ввода энергии и устройство вывода энергии на основе Н-тройников, включенных симметрично в короткозамкнутые плечи накопительного резонатора, к выходным плечам Н-тройников элемента вывода подсоединено суммирующее устройство с выходным волноводом, при этом накопительный резонатор выполнен в виде двух идентичных ортогональных короткозамкнутых волноводных секций, лежащих в одной плоскости, которые в их центральной части объединены в единую резонансную систему через окна связи в цилиндрической стенке встроенного резонатора, газоразрядная трубка СВЧ-коммутатора расположена в центре встроенного резонатора и ориентирована под углом ±45° к волноводным секциям, а устройство ввода выполнено в виде прямоугольного волноводного отрезка, подсоединено к одной из торцовых стенок встроенного резонатора соосно с ним и узкие стенки отрезка ориентированы параллельно газоразрядной трубке, устройство вывода выполнено в виде четырех Н-тройников, расположенных от ближайшего короткозамыкателя волноводных секций на расстоянии, равном 0,25l - 0,5R=nλв/2, где l - длина волноводной секции накопительного резонатора; R - радиус встроенного резонатора; n - целое число от 2 до ~10; λв - длина волны в волноводных секциях, а выходами накопительного резонатора, к которым подсоединено суммирующее устройство, являются однонаправленные боковые плечи Н-тройников, ортогональные плоскости, в которой расположены волноводные секции накопительного резонатора. 2 ил.

Изобретение относится к системе гибкой стенки для СВЧ-фильтров с объемным резонатором, снабженным механическим устройством температурной компенсации, и может использоваться в области телекоммуникации. Достигаемый технический результат - снижение температурного градиента гибкого колпачка, снижение механических напряжений, поддержание эквивалентного теплового сопротивления. Система гибкой стенки для компонента фильтра или мультиплексора вывода с технологией термокомпенсации содержит по меньшей мере две расположенные друг над другом отдельные гибкие мембраны и каждая гибкая мембрана имеет центральную область(С), промежуточную область (I) и периферийную область (Р) торец к торцу, при этом гибкие мембраны термически и механически соединены в центральной области (С) и периферийной области (Р) и не соединены в промежуточной области (I). 3 н. и 14 з. п. ф-лы , 6 ил.

Устройство формирования нано- и субнаносекундных СВЧ-импульсов относится к радиотехнике и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности с частотой следования входного микросекундного СВЧ-импульса, а также серии СВЧ-импульсов субнаносекундной длительности в пределах входного импульса, генерируемого в частотно-периодическом режиме. Устройство содержит многомодовый резонатор (1) с элементом ввода энергии (2), расположенным на его входной торцовой стенке, с элементом вывода энергии (3), выполненным в виде плавного перехода с корпуса резонатора на выходной волновод (4). Выходной волновод (4) выполнен в виде сверхразмерного прямоугольного волновода с первой стенкой, имеющей размер а, равный размеру широкой стенки одномодового стандартного прямоугольного волновода, и второй стенкой, выполненной сверхразмерной, имеющей размер d, удовлетворяющий соотношениям d=nb<0,2 L, где n=[0,2 L/b] - число, являющееся целой частью отношения 0,2 L/b; b - размер узкой стенки одномодового стандартного прямоугольного волновода, L - длина резонатора, 5λ<L<50λ, λ - длина волны в свободном пространстве. Интерференционный СВЧ-переключатель (5) выполнен в виде крестообразного волноводного соединения в Н плоскости из сверхразмерного прямоугольного волновода, идентичного выходному волноводу, с прямыми плечами (6), лежащими на одной линии и последовательно встроенными в выходной волновод, а также двумя боковыми плечами (7, 8), ортогональными выходному волноводу (4). Одно из боковых плеч (7) односвязно, имеет полуволновую длину и газоразрядная трубка расположенного в нем СВЧ-коммутатора (9) параллельна сверхразмерной стенке. Второе боковое плечо (8) многосвязно и набрано в виде пакета из n параллельных плотно прилегающих друг к другу Н-тройников (11) с полуволновыми прямыми входными плечами (12), короткозамкнутыми боковыми плечами с расположенными в них СВЧ-коммутаторами, а также короткозамкнутыми выходными прямыми плечами (14), имеющими длину l, удовлетворяющую неравенствам λв<l<L, λв - длина волны в волноводе. Электроды каждого СВЧ-коммутатора подсоединены к источнику управляющих сигналов. Технический результат - повышение мощности выходных импульсов и расширение функциональных возможностей устройства. 3 ил.

В способе возбуждения резонатора, который имеет резонансную частоту, резонатор в течение первого временного интервала возбуждается с первой частотой, которая отличается от резонансной частоты на первую разность частот. В течение второго временного интервала резонатор возбуждается с второй частотой, которая отличается от резонансной частоты на вторую разность частот. Первая разность частот и вторая разность частот имеют разные знаки. Кроме того, величины первой разности частот и второй разности частот отличаются друг от друга менее чем на 10% большей величины. 2 н. и 25 з.п. ф-лы, 5 ил.
Наверх