Теплостойкая сталь


 


Владельцы патента RU 2441092:

Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" (RU)

Изобретение относится к области металлургии, а именно к теплостойким сталям, используемым для отливки деталей паровых турбин, заготовок труб и деталей арматуры методом ЭШП и центробежным литьем, работающих при температурах 540-580°С. Сталь содержит углерод, кремний, марганец, хром, никель, молибден, ванадий, медь, алюминий, серу, фосфор, азот, кальций, церий и железо при следующем соотношении компонентов, мас.%: углерод 0,11-0,15, кремний 0,17-0,37, марганец 0,40-0,70, хром 1,10-2,00, никель ≤0,30, молибден 0,80-1,10, ванадий 0,20-0,35, алюминий 0,001-0,008, медь ≤0,30, сера ≤0,006, фосфор ≤0,008, азот 0,005-0,012, кальций 0,005-0,02, церий 0,005-0,03, железо остальное. Повышаются механические свойства стали и окалиностойкость. 1 з.п. ф-лы, 3 табл.

 

Изобретение относится к области металлургии, а именно к теплостойким сталям, в частности к созданию сталей, которые могут быть использованы для отливок деталей турбин, деталей арматуры и другого оборудования в других отраслях промышленности.

Изобретение наиболее эффективно может быть использовано при изготовлении методом электрошлакового переплава (ЭШП) деталей арматуры, а также центробежно-литых труб и деталей для паровых турбин мощностью 300-1200 МВт с рабочими режимами при температурах 540-580°С и давлении от 2,5 до 5,0 МПа. Изобретение может быть также использовано для нефтехимического оборудования.

Известна сталь, применяемая для таких целей, состоящая из следующих компонентов, (мас.%):

Углерод 0,10-0,28
Кремний 0,05-0,37
Марганец 0,17-0,50
Хром 2,50-3,30
Молибден 0,60-0,80
Ванадий 0,20-0,40
Никель 0,05-0,40
Медь 0,03-0,30
Алюминий 0,01-0,10
Азот 0,005-0,02
Кальций 0,001-0,005
Сера 0,002-0,015
Фосфор 0,002-0,015
Олово 0,001-0,004
Мышьяк 0,002-0,005
Сурьма 0,001-0,005
Цирконий 0,003-0,010
Ниобий 0,001-0,030
Натрий 0,001-0,005
Железо остальное

(см. Патент РФ RU 2241061 С2, кл. С22С 38/60)

Недостатком данной стали являются плохие литейные характеристики и нестабильность ударной вязкости из-за разброса интервала легирования, особенно по содержанию углерода.

Известна также литейная сталь следующего состава, (мас.%):

Углерод 0,11-0,13
Кремний 0,17-0,37
Марганец 0,90-1,40
Хром 0,80-2,50
Никель 0,20-0,60
Молибден 0,10-0,80
Ванадий 0,03-0,14
Окислы редкоземельных
металлов 0,10-0,50
Ниобий 0,01-0,06
Железо остальное

(см. Патент РФ RU 2083716 С1, кл. С22С 38/48)

Недостатком данной стали является отсутствие регламентации по примесям (S,P и др.), что существенно снижает качество отливок и разброс данных по механическим свойствам из-за большого интервала легирования по хрому и молибдену. Данная сталь обладает также пониженной жаростойкостью, особенно при содержании ингредиентов на нижнем уровне.

Наиболее близкой к предложенному сплаву по технической сущности и достигаемому результату является сталь (см. Патент Великобритании 1558731, кл. С22С 38/60,) следующего состава, (мас.%):

Углерод 0,05-0,20
Кремний 0,01-0,50
Марганец 0,60-2,00
Хром ≤0,80
Никель 0,10-0,60
Молибден 0,10-0.80
Ванадий 0,01-0,15
Ниобий 0,01-0,15
Цирконий 0,01-0.10
Титан 0,01-0,10
Бор 0,0005-0,005
Медь 0,20-0,60
Алюминий 0,01-0,10
Сера ≤0,002
РЗМ 0,008-0,03
Железо остальное

Недостатками данной стали являются низкие пределы текучести и прочности и низкая окалиностойкость при содержании ингредиентов на нижнем уровне. Кроме того, при содержании углерода на верхнем уровне стали-прототипа (0,20 мас.%) сталь склонна к образованию горячих трещин в процессе производства заготовок труб методом ЭШП.

Технический результат - получение теплостойкой стали с высокими механическими свойствами и окалиностойкостью, что обеспечивает повышение рабочей температуры турбин до 580°С. Этот результат достигается тем, что предлагаемая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, медь, алюминий, серу, церий и железо, согласно предложению дополнительно содержит фосфор, азот и кальций при следующем соотношении компонентов, (мас.%):

Углерод 0,11-0,15
Кремний 0,17-0,37
Марганец 0,40-0,70
Хром 1,10-2,00
Никель ≤0,30
Молибден 0,80-1,10
Ванадий 0,20-0,35
Алюминий 0,001-0,008
Медь ≤0,30
Сера ≤0,006
Фосфор ≤0,008
Азот 0,005-0,012
Кальций 0,005-0,02
Церий 0,005-0,03
Железо остальное

При этом суммарное содержание остаточного алюминия, кальция и церия составляет 0,010-0,05 мас.%.

Предлагаемая сталь характеризуется оптимальным содержанием углерода 0,11-0,15 мас.%, против 0,05-0,20 мас.% в прототипе, что обеспечивает высокую технологичность при ЭШП, центробежном литье и сварке. Вместе с тем такое содержание углерода в предлагаемой стали обеспечивает необходимую прочность и окалиностойкость.

При содержании углерода ниже нижнего предела его воздействие на служебные свойства стали малоэффективно, так как при содержании углерода 0,05 мас.% (как у прототипа) снижаются механические свойства и усложняется технология при центробежном литье, а при содержании углерода на верхнем уровне стали прототипа (0,20 мас.%) происходит повышение прочностных характеристик с одновременным резким снижением ударной вязкости за счет увеличения количества карбидов и их коалесценции и обеднения твердого раствора Mo, Сr и V, что снижает окалиностойкость стали. Кроме того, такое содержание углерода приводит к образованию горячих трещин в процессе производства заготовок труб методом ЭШП.

Предлагаемая сталь характеризуется оптимальным содержанием кремния 0,17-0,37 мас.%, против 0,01-0,50 мас.% в известной стали, что вполне достаточно для раскисления стали.

При содержании кремния ниже нижнего предела его воздействие на свойства стали малоэффективно, а при содержании кремния выше верхнего предела прочность и окалиностойкость повышаются, но снижается ударная вязкость и технологичность в процессе ЭШП.

Предлагаемая сталь отличается от известной большим содержанием хрома 1,10-2,00 мас.%, против не более 0,80 мас.%, что обеспечивает высокую прокаливаемость и более высокую окалиностойкость.

При содержании хрома ниже нижнего предела его действие на прокаливаемость менее эффективно, а при содержании хрома выше верхнего предела прокаливаемость и окалиностойкость несколько увеличивается, но также повышается стоимость.

Предлагаемая сталь отличается от известной повышенным содержанием молибдена (0,80-1,10 мас.%), против 0,10-0,80 мас.%, что способствует повышению прокаливаемости, прочности и окалиностойкости, не снижая пластичности и препятствуя развитию отпускной хрупкости.

При содержании молибдена ниже нижнего предела его воздействие на прочность, пластичность и окалиностойкость менее эффективно, а при содержании молибдена выше верхнего предела некоторое повышение прочности, пластичности и окалиностойкости вступает в противоречие с экономической целесообразностью.

Предлагаемая сталь отличается от известной тем, что суммарное содержание алюминия, кальция и церия составляет 0,010-0,05 мас.%.

Введение в состав стали лимитированного содержания активных элементов кальция и церия в сочетании со сбалансированным содержанием остаточного алюминия благоприятно изменяет форму неметаллических включений, очищает и упрочняет границы зерен, повышает пластичность, ударную вязкость и окалиностойкость, что приводит к повышению служебных и технологических свойств стали. Нижний уровень содержания алюминия определяется требованием обеспечения раскисляемости стали, а верхний уровень - требованием обеспечения заданного уровня пластичности стали.

Церий в присутствии кальция улучшает стойкость против окисления. При суммарном введении церия и кальция в указанных пределах повышается окалиностойкость предложенной стали.

При содержании кальция и церия ниже нижнего предела суммарного содержания их воздействие на теплостойкость малоэффективно, а при содержании их выше верхнего предела суммарного содержания снижается стойкость к окислению и уменьшается теплостойкость предложенной стали.

Остаточное содержание алюминия в стали составляет 0,001-0,008 мас.%. При содержании остаточного алюминия ниже нижнего предела не обеспечивается эффективное раскисление стали, что приводит к увеличению количества оксидных включений и снижению прочностных свойств стали. При увеличении содержания остаточного алюминия выше верхнего предела снижаются характеристики теплостойкости и ударной вязкости стали, что обусловлено дополнительным выделением на границе зерен нитридов алюминия.

Предлагаемая сталь отличается от известной ограничением содержания примесей фосфора до 0,008 мас.%, против нет ограничений в стали-прототипе, что способствует получению более высоких значений пластичности и ударной вязкости; При повышении содержания легкоплавких примесей серы и фосфора выше заявленных пределов резко увеличивается неоднородность структуры стали, что в свою очередь снижает теплостойкость стали. При увеличении содержания углерода в стали выше заявленного происходит более интенсивное образование сегрегации фосфора, которые объединяются и образуют сетку по границам первичных аустенитных зерен, что приводит к ослаблению межкристаллитных связей. Марганец также способен усиливать охрупчивающее действие фосфора, поэтому при производстве сталей, содержащих марганец, необходимо стремиться к обеспечению в стали минимальных концентраций фосфора. Наличие в составе предлагаемой стали никеля и молибдена значительно ослабляет вредное влияние фосфора на свойства стали.

Предлагаемая сталь отличается от известной дополнительным содержанием азота 0,005-0,012 мас.%, что способствует увеличению прочности за счет образования нитридов и карбонитридов ванадия и хрома. Высокодисперсные нитриды и карбонитриды этих элементов тормозят рост зерен при нагревании, что способствует сохранению высокой ударной вязкости.

При содержании азота ниже нижнего предела его воздействие на прочность и ударную вязкость данной стали малоэффективно, а при содержании азота выше верхнего предела несколько повышается прочность, но снижается ударная вязкость, что связано с обогащением границ зерен карбидами и карбонитридами.

Предлагаемая сталь отличается от известной повышенным содержанием ванадия 0,20-0,35 мас.%, против 0,01-0,15 мас.%. Ванадий способствует измельчению зерна, уменьшает склонность стали к перегреву и увеличивает устойчивость мартенсита против отпуска. Ванадий способствует повышению характеристик прочности и теплостойкости. Верхняя граница содержания ванадия - 0,35 мас.%, обусловлена необходимостью требуемого уровня пластичности стали, а нижняя - соответственно 0,20 мас.% - обеспечением требуемого уровня прочности данной стали.

При содержании ванадия ниже нижнего предела его воздействие на прочность и ударную вязкость данной стали малоэффективно, а при содержании ванадия выше верхнего предела снижается прочность и ударная вязкость, что связано с обогащением границ зерен карбидами и карбонитридами ванадия.

В таблице 1 приведены химический состав предлагаемой стали трех плавок(1,2,3), а также состав стали прототипа (4).

Выплавку проводили в 150-кг индукционной печи, с разливкой металла на литые электроды с последующим переплавом ЭШП на заготовки труб диаметром 180 мм, длиной 350 мм на лабораторной установке, из которых изготавливались образцы для определения механических свойств и окалиностойкости.

В таблице 2 приведены механические свойства, полученные после термообработки: гомогенизация 1000°С, охлаждение на воздухе, закалка от 980°С в масле, отпуск при температуре 650°С, охлаждение на воздухе.

Испытания на растяжение проводили на цилиндрических образцах пятикратной длины с диаметром расчетной части 6 мм в соответствии с ГОСТ 1497-84.

Определение ударной вязкости при нормальной температуре производилось на образцах Менаже по ГОСТ 9454-78.

Испытания на жаростойкость (окалиностойкость) проводились по общепринятым методикам (таблица 3).

Как видно из таблицы 2 и 3, предлагаемая сталь имеет более высокие механические свойства и окалиностойкость, чем сталь-прототип. Кроме того, предлагаемая сталь после проведенной термообработки имеет мартенситную (мартенсит отпуска) структуру, что положительно сказывается на теплостойкости стали.

Использование предложенной стали в качестве материала для отливок ЭШП тепловых турбин позволяет повысить рабочую температуру турбин до 580°С.

Предлагаемая сталь прошла широкие лабораторные исследования в ОАО НПО «ЦНИИТМАШ» и рекомендована к промышленному опробованию.

Литература:

1. RU 94018908 А1, С22С 38/00, 05.05.1994.

2. RU 93025219 A, C22C 38/28, 28.04.1993.

3. RU 2081199 C1, C22C 38/26, 19.07.1995.

4. RU 2336330 C1, C21D 8/10, C22C 38/60, C22C 38/48, 25.12.2006.

5. RU 2338796 C2, C21D 8/10, C22C 38/60, C22C 38/48, 18.12.2006.

6. RU 2083716 C1, C22C 38/48, 10.02.1993.

7. RU 2241061 C2, кл. С22С 38/60, 07.09.2001.

8. Патент Великобритании 1558731, кл. С7А.

9. Патент Японии JP 2010209471 (А).

10. ЕР 2192203 (A1).

Таблица 2
Механические свойства предлагаемой и известной сталей
Состав стали Тисп., °C σ0,2, σb, δ, φ, KCU
Н/мм2 % Дж/см2
1 20 550 750 22,0 55,0 130,0
2 20 560 770 21,0 52,0 1250
3 20 555 765 24,0 53,0 125,0
4 20 520 655 18,0 60,0 95,0
Таблица 3
Жаростойкий предлагаемой и известной сталей
Состав стали Среда Tисп., °С Скорость коррозии, мм/год База испытаний, ч
1 Пар 610 0,09 3000
2 0,05
3 0,06
4 0.28
1 Воздух 600 0,16 3000
2 0,15
3 0,16
4 0,41

1. Теплостойкая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, медь, алюминий, серу, церий и железо, отличающаяся тем, что дополнительно содержит фосфор, азот и кальций при следующем соотношении компонентов, мас.%:

углерод 0,11-0,15
кремний 0,17-0,37
марганец 0,40-0,70
хром 1,10-2,00
никель ≤0,30
молибден 0,80-1,10
ванадий 0,20-0,35
алюминий 0,001-0,008
медь ≤0,30
сера ≤0,006
фосфор ≤0,008
азот 0,005-0,012
кальций 0,005-0,02
церий 0,005-0,03
железо остальное

2. Сталь по п.1, отличающаяся тем, что суммарное содержание остаточного алюминия, кальция и церия составляет 0,010-0,05 мас.%.



 

Похожие патенты:

Сталь // 2440436
Изобретение относится к области черной металлургии, а именно к стали, используемой для изготовления контррельсовых уголков. .
Изобретение относится к области металлургии, а именно к составам сталей, которые могут быть использованы для изготовления деталей машин и оборудования, работающих в тяжелых условиях, в частности для прокатных валков трубоэлектросварочных станов.

Изобретение относится к прокатному производству, в частности к производству холоднокатаных полос, предназначенных для изготовления кузовных деталей автомобилей штамповкой.
Изобретение относится к области металлургии, а именно к составам слоистых стальных материалов, используемых для изготовления бронезащитных конструкций. .

Изобретение относится к области черной металлургии, а именно к производству стали для железнодорожных рельсов. .

Изобретение относится к области черной металлургии, а именно к составам сталей, используемых для изготовления остряковых железнодорожных рельсов. .

Изобретение относится к области металлургии, а именно к мартенситной нержавеющей стали для сварных конструкций, стойкой к коррозионному растрескиванию под напряжением.

Изобретение относится к области металлургии, а именно к низколегированным сталям, используемым для изготовления сварных нефте- и газопроводных труб, пригодных к эксплуатации в условиях Крайнего Севера.

Изобретение относится к области металлургии, а именно к составам нестареющих сталей, обладающих высокой пластичностью, и может быть использовано при производстве листов и сортового проката, применяемых в машиностроении для изделий, обладающих различной прочностью в разных местах одной и той же детали.
Изобретение относится к черной металлургии, а именно к стали, используемой для изготовления остряковых рельсов. .

Изобретение относится к области металлургии, а именно к конструкционным литейным сталям, применяемым в различных отраслях промышленности, в том числе в автомобилестроении при изготовлении крупногабаритных отливок для карьерных самосвалов особо большой грузоподъемности, работающих при повышенных ударных нагрузках и в экстремальных климатических условиях
Изобретение относится к области черной металлургии, а именно к производству стали, используемой для изготовления железнодорожных рельсов
Изобретение относится к области черной металлургии, в частности к стали, используемой для изготовления железнодорожных рельсов, а также рельсов для метрополитена

Изобретение относится к области металлургии, а именно к получению бейнитной стали, используемой для изготовления, в частности, брони

Изобретение относится к области металлургии, преимущественно для получения штрипсов, используемых при строительстве магистральных нефтегазопроводов в районах Крайнего Севера

Изобретение относится к области металлургии и может быть использовано при изготовлении сварных конструкций из двухслойного проката, длительно эксплуатирующихся при отрицательных температурах в условиях интенсивного механического, коррозионно-эрозионного воздействия мощных ледовых полей и морской воды, в частности корпусов атомных ледоколов, судов ледового плавания, морских ледостойких стационарных и плавучих платформ для добычи углеводородов на арктическом шельфе
Изобретение относится к области металлургии, а именно к производству крупного горячекатаного сортового и фасонного проката из низкоуглеродистой низколегированной стали. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,08-0,12, марганец 1,30-1,80, кремний от более 0,50 до 0,80, фосфор до 0,030, сера от более 0,01 до не более 0,030, хром до 0,3, никель до 0,3, медь до 0,3, алюминий более 0,01, ванадий 0,05-0,10, кальций 0,0001-0,005, азот до 0,008 и железо остальное. Обеспечивается требуемая величина предела текучести 345 Н/мм2 при изготовления крупного горячекатаного сортового и фасонного проката без использования системы ускоренного охлаждения после прокатки. 1 пр.

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления деталей режущих инструментов. Сталь содержит, в мас.%: от 0,28 до 0,5 С, от 0,10 до 1,5 Si, от 1,0 до 2,0 Mn, максимум 0,2 S, от 1,5 до 4 Cr, от 3,0 до 5 Ni, от 0,7 до 1,0 Mo, от 0,6 до 1,0 V, от следовых количеств до общего максимального содержания 0,4% мас. редкоземельных металлов, остальное составляют, по существу, только железо и примеси. После смягчающего отжига сталь имеет матрицу, включающую перестаренный мартенсит с содержанием примерно до 5% об., по существу, круглых, равномерно распределенных карбидов, причем матрица, по существу, не содержит карбидов по границам зерен. Сталь обладает улучшенной обрабатываемостью, износостойкостью и способностью к закалке. 7 н. и 15 з.п. ф-лы, 21 ил., 6 табл.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения свариваемых штрипсов категории прочности X100 по стандарту API 5L-04, используемых при строительстве магистральных нефтегазопроводов высокого давления. Техническим результатом является повышение прочностных свойств штрипсов при обеспечении доли волокнистой составляющей в изломе образца не менее 90%. Для достижения технического результата после выплавки стали получают непрерывнолитые слябы, нагревают их до температуры аустенитизации, проводят многопроходную черновую и чистовую прокатку с регламентируемой температурой конца прокатки и охлаждение штрипсов водой, при этом после черновой прокатки раскаты охлаждают до температуры 720-800°C, чистовую прокатку ведут с относительными обжатиями за проход 8-25% и температурой конца прокатки, равной 740-790°C, после чего штрипсы охлаждают со скоростью не менее 17°C/с. Сталь выплавляют следующего химического состава, мас.%: 0,06-0,11 C, 0,02-0,04 Si, 1,45-1,95 Mn, 0,15-0,28 Mo, 0,01-0,06 Nb, 0,01-0,09 Ti, 0,15-0,35 Ni, 0,10-0,30 Cr, 0,002-0,009 N, не более 0,20 V, остальное Fe. 2 табл.
Изобретение относится к области металлургии, а именно к высокопрочным конструкционным сталям, закаливающимся преимущественно на воздухе, используемым для изготовления осесимметричных корпусных деталей. Сталь содержит углерод, кремний, хром, марганец, никель, молибден, ванадий, медь, серу, фосфор, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,18 - 0,24, марганец 1,0 - 1,5, кремний 0,20 - 0,40, сера не более 0,010, фосфор не более 0,015, хром от более 3,00 до 3,20, никель 0,90 - 1,20, молибден 0,50 - 0,70, ванадий 0,10 - 0,20, медь не более 0,25, железо и неизбежные примеси - остальное. После термомеханической обработки сталь обладает высокой пластичностью, позволяющей деформировать ее методом ротационной вытяжки в холодном состоянии со степенями деформации 50-70% и обеспечением механических свойств в упрочненном состоянии выше 155 кгс/мм2 при относительном удлинении не менее 7%. 3 табл., 2 пр.
Наверх