Способ получения препарата на основе радия-224

Изобретение относится к радиохимии и может быть использовано для получения применяемого в ядерной медицине препарата на основе радия-224. Способ получения препарата на основе радия-224 включает сорбцию тория-228 из водного кислого раствора тория-228 и радия-224 на сорбенте, селективно удерживающем торий-228, причем в качестве сорбента используют фосфоново-кислотный катионит. Далее пропускают через колонку с фосфоново-кислотным катионитом 3М÷4М раствор соляной кислоты с торием-228 и радием-224, выдерживают торий-228 на фосфоново-кислотном катионите до накопления в нем радия-224 в количестве не менее 50% от равновесного количества и десорбируют радий-224 7М÷8М раствором соляной кислоты. Изобретение позволяет уменьшить содержание тория-228 в конечном продукте радия-224. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к радиохимии и может быть использовано для получения применяемого в ядерной медицине препарата на основе радия-224.

Известен способ выделения радия-224 из водных кислых растворов тория-232 и его дочерних элементов радия-224, радона-220, полония-216, полония-212, висмута-212 и др. (Selucký P., Rais K., Jindřich K., Radiochem. Radioanal. Letters. 1980. V.42. N2. P.115-120). Радий-224 экстрагируют из водного 1М раствора, в состав которого входят ThCl4, 5М HCl, 0,03М HF, раствором кислой формы дикарболида кобальта (3+) в нитробензоле в присутствии n-нонилфенилнонаэтилен гликоля. Органическую фазу промывают равным объемом 2М HCl и затем разбавляют в соотношении 1:1 диизопропиловым эфиром. Радий-224 реэкстрагируют из органической фазы равным объемом 0,5М HCl.

Недостаток способа заключается в том, что в нем не предусмотрена глубокая очистка радия-224 от материнского тория-228 и неактивных примесей, поэтому получаемый по способу радий-224 непригоден для применения в ядерной медицине.

Наиболее близким по технической сущности заявляемому способу является способ получения радия-224, заключающийся в сорбционном разделении тория-228 и радия-224 на анионообменной смоле AG1×8 (Atcher R., Hines J., Friedman A. J. Radioanal. Nucl. Chem., Letters. 1987. V.117. N3. P.155-162). Раствор тория-228 и радия-224 в 8М HNO3 пропускают через колонку с анионообменной смолой AG1×8. Торий-228 сорбируется анионообменной смолой, а радий-224 остается в растворе. Раствор с радием-224 упаривают, растворяют в 8М HNO3 и пропускают через вторую такую же колонку для очистки от остатков тория-228. Содержание тория-228 в получаемом радии-224 составляет 5·10-3% по активности.

Недостаток способа заключается в том, что очистка радия-224 от тория-228 является недостаточной для его применения в ядерной медицине.

Технический результат изобретения заключается в уменьшении содержания тория-228 в конечном продукте радия-224.

Для достижения технического результата в способе получения препарата на основе радия-224, включающем сорбцию тория-228 из водного кислого раствора тория-228 и радия-224 на сорбенте, селективно удерживающем торий-228, предлагается в качестве сорбента, селективно удерживающего торий-228, использовать фосфоново-кислотный катионит, пропускать через колонку с фосфоново-кислотным катионитом 3М÷4М раствор соляной кислоты с торием-228 и радием-224, выдерживать торий-228 на фосфоново-кислотном катионите до накопления в нем радия-224 в количестве не менее 50% от равновесного количества и десорбировать радий-224 7М÷8М раствором соляной кислоты.

В частных случаях применения способа предлагается:

- для сорбции тория-228 использовать фосфоново-кислотный катионит КРФ-20т-60;

- раствор радия-224, полученный десорбцией из колонки с катионитом КРФ-20т-60, очищать от неактивных примесных катионов и продуктов радиолиза на колонке с анионитом;

- раствор радия-224, полученный десорбцией из колонки с анионитом, дополнительно очищают от неактивных примесных катионов и продуктов радиолиза на колонке с катионитом;

- для очистки раствора радия-224 использовать анионит Dowex 1×8 и катионит Dowex 50W×8.

На фигуре представлена технологическая схема получения радия-224, где 1 - приготовление исходного раствора тория-228; 2 - сорбция тория-228 на колонке с фосфоново-кислотным катионитом, выдержка тория-228 на фосфоново-кислотном катионите до накопления в нем радия-224 и десорбция радия-224; 3 - очистка раствора радия-224 от неактивных примесных катионов и продуктов радиолиза на колонке с анионитом Dowex 1×8; 4 - корректировка объема и кислотности раствора радия-224; 5 - очистка раствора радия-224 от неактивных примесных катионов и продуктов радиолиза на колонке с катионитом Dowex 50W×8; 6 - корректировка объема и кислотности готового продукта, раствора радия-224.

Способ применяют следующим образом.

Растворяют торий-228 в 3М÷4М растворе соляной кислоты.

Полученный раствор тория-228 пропускают через колонку с фосфоново-кислотным катионитом КРФ-20т-60, при этом торий-228 сорбируется катионитом.

Торий-228 выдерживают на катионите четверо и более суток. За это время в результате α-распада тория-228 на катионите накапливается не менее 50% радия-224 от равновесного количества.

Десорбируют радий-224 с катионита 7М÷8М раствором соляной кислоты.

Полученный раствор радия-224 пропускают через колонку с анионитом Dowex 1×8 для очистки от неактивных примесных катионов.

Раствор радия-224, прошедший через колонку с анионитом Dowex 1×8, упаривают досуха и сухой остаток растворяют в 1М растворе азотной кислоты.

Этот раствор пропускают через колонку с катионитом Dowex 50W×8. Колонку промывают 1М раствором азотной кислоты, после чего десорбируют радий-224 из колонки с катионитом 8М раствором азотной кислоты.

Десорбат, содержащий радий-224, упаривают досуха и сухой остаток растворяют в требуемом объеме азотной или соляной кислоты необходимой концентрации.

Этот раствор является конечным продуктом.

Пример конкретного применения способа

Растворяют торий-228 и образовавшийся в результате его α-распада радий-224 в 3,5М растворе соляной кислоты. Полученный раствор тория-228 и радия-224 пропускают через колонку с фосфоново-кислотным катионитом КРФ-20т-60, при этом торий-228 сорбируется катионитом, а радий-224 остается в растворе. Прошедший колонку раствор поступает в низкоактивные жидкие отходы. Торий-228 выдерживают на катионите четверо суток. За четверо суток в результате α-распада тория-228 на катионите накапливается не менее 50% радия-224 от равновесного количества. Десорбируют радий-224 с катионита 7,5М раствором соляной кислоты. Полученный раствор радия-224 пропускают через колонку с анионитом Dowex 1×8 и тем самым очищают его от неактивных примесных катионов.

Раствор радия-224, прошедший через колонку с анионитом Dowex 1×8, упаривают досуха и сухой остаток растворяют в 1М растворе азотной кислоты.

Этот раствор пропускают через колонку с катионитом Dowex 50W×8. Колонку промывают 1М раствором азотной кислоты, после чего десорбируют радий-224 из колонки с катионитом 8М раствором азотной кислоты. Десорбат, содержащий радий-224, упаривают досуха и сухой остаток растворяют в требуемом объеме азотной или соляной кислоты необходимой концентрации.

Содержание тория в конечном продукте не превышает 2·10-7% по активности.

Получен технический результат изобретения, содержание тория-228 в конечном продукте радия-224 уменьшено с 5·10-3% по активности до 2·10-7% по активности.

1. Способ получения препарата на основе радия-224, включающий сорбцию тория-228 из водного кислого раствора тория-228 и радия-224 на сорбенте, селективно удерживающем торий-228, отличающийся тем, что в качестве сорбента, селективно удерживающего торий-228, используют фосфоново-кислотный катионит, пропускают через колонку с фосфоново-кислотным катионитом 3М÷4М раствор соляной кислоты с торием-228 и радием-224, выдерживают торий-228 на фосфоново-кислотном катионите до накопления в нем радия-224 в количестве не менее 50% от равновесного количества и десорбируют радий-224 7М÷8М раствором соляной кислоты.

2. Способ по п.1, отличающийся тем, что для сорбции тория-228 используют фосфоново-кислотный катионит КРФ-20т-60.

3. Способ по п.1, отличающийся тем, что раствор радия-224, полученный десорбцией из колонки с катионитом КРФ-20т-60, очищают от неактивных примесных катионов и продуктов радиолиза на колонке с анионитом.

4. Способ по п.1, отличающийся тем, что раствор радия-224, полученный десорбцией из колонки с анионитом, дополнительно очищают от неактивных примесных катионов и продуктов радиолиза на колонке с катионитом.

5. Способ по п.1, отличающийся тем, что для очистки раствора радия-224 используют анионит Dowex 1×8 и катионит Dowex 50W×8.



 

Похожие патенты:

Изобретение относится к радиоактивным источникам, предназначенным для медицинских целей, и может использоваться для получения визуализирующих средств, применяемых в диагностических регистрирующих системах.

Изобретение относится к медицинской технике, а именно к устройствам для гамма-лучевой терапии, и может быть использовано для лечения злокачественных опухолей. .
Изобретение относится к способу получения 68Ga из генератора 68Ge/ 68Ga и к способу получения меченых изотопом 68Ga комплексов с использованием полученного 68Ga. .

Изобретение относится к способу изготовления радиоизотопных генераторов и предназначено для ядерной медицины. .
Изобретение относится к области ядерной медицины. .

Изобретение относится к реакторной технологии получения радионуклидов, применяемых в ядерной медицине. .

Изобретение относится к технологии получения медицинских средств, содержащих радиоактивные вещества, и может быть использовано для терапии онкологических заболеваний, а также для получения -источников, применяемых в приборостроении и биологических исследованиях.

Изобретение относится к области радиохимии и может быть использовано в технологии получения препарата радионуклида стронция-89. .
Изобретение относится к области медицины, в частности онкологии, лучевой терапии первичного и метастатического рака влагалища. .

Изобретение относится к производному тетрадодецилоксифенилкаликс[4]арена формулы которое может применяться для сорбции азо-красителей из водных растворов и расширяет арсенал известных средств указанного назначения.
Изобретение относится к очистке и фракционированию гуминовых кислот и гуминоподобных веществ, экстрагированных из природных объектов. .

Изобретение относится к аналитической химии. .

Изобретение относится к колонкам для разделения жидких веществ и может быть использовано в биотехнологии, фармакологии, пищевой промышленности, при очистке промышленных стоков и питьевой воды.

Изобретение относится к способу получения иттрия-90 высокой степени чистоты, который включает разделение находящихся в азотнокислом растворе стронция-90 и иттрия-90 и дальнейшую очистку иттрия-90 от следов стронция-90 на экстракционно-хроматографических колонках с твердым экстрагентом на основе ди-2-этилгексилфосфорной кислоты, очистку от неактивных примесных катионов на экстракционно-хроматографической колонке с твердым экстрагентом на основе октил(фенил)-N-N-диизобутилкарбамоилметилфосфиноксида в трибутилфосфате и очистку полученного иттрия-90 от органических примесей на катионообменной смоле.

Изобретение относится к устройствам, которые могут быть использованы для хромотографического разделения, очистки образцов от химических веществ. .

Изобретение относится к устройствам для разделения смесей газов и паров методом газовой хроматографии и может быть использовано при глубокой переработке углеводородного сырья, его крекинге и риформинге.

Изобретение относится к области сепарации природных или химических веществ и касается способа и устройства сепарации в моделируемом подвижном слое (SMB) с уменьшенным числом вентилей большого диаметра
Наверх