Датчик измерителя напряженности электростатического поля


 


Владельцы патента RU 2442183:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (RU)

Предложен датчик измерителя напряженности электростатического поля. Он содержит неподвижный заземленный экранирующий электрод с секторными вырезами, вращающийся заземленный электрод-модулятор и чувствительный электрод. Последний выполнен в виде диска с отверстием для прохода вала модулятора. Неподвижный экранирующий электрод установлен на цилиндрическом корпусе, снабженном вырезами вдоль образующих цилиндра корпуса. Высота вырезов равна расстоянию от внешней границы неподвижного электрода до плоскости внутренней поверхности вращающегося электрода. Техническими результатами являются вынос влаги за пределы датчика и повышение устойчивости его работы в капельной среде. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано при измерении напряженности электростатического поля.

Электростатическая безопасность грузовых операций с легковоспламеняющимися углеводородными жидкостями требует контроля напряженности электростатического поля в резервуарах.

Одной из наиболее взрывоопасных операций является гидромониторная мойка резервуаров после пребывания в них таких жидкостей. Однако длительный контроль величины напряженности поля с помощью выпускаемых промышленностью измерителей при этом невозможен из-за неустойчивой работы датчиков в воздушно-капельной среде, возникающей в резервуарах при их мойке.

Известен датчик напряженности электростатического поля по типу электростатического генератора, содержащий измерительные электроды и вращающийся заземленный электрод-модулятор, принцип работы которого основан на периодическом экранировании измерительных электродов от поля за счет перемещения модулятора относительно чувствительных элементов (S.G.Gothem, R.V.Anderson. Improved field meter for electrostatic measurements, RSJ, 36.10.1965).

Недостатком этого датчика является то, что при использовании его в воздушно-капельной среде уменьшается электрическое сопротивление изоляции чувствительных электродов относительно земли, что приводит к выходу датчика из строя.

Известны измерители с датчиками динамического типа с вращающимися измерительными элементами, в которых приняты меры по защите выходов этих чувствительных элементов и входов измерителей от влаги.

(Имянитов И.М. Приборы и методы для измерения атмосферы. ГИТТЛ. М., 1957, с.189-193).

Недостатками этих измерителей являются их значительные размеры для обеспечения достаточной чувствительности, не позволяющей использовать их для измерений на границах небольших объемов, а также сложность обеспечения защиты скользящих контактов от влаги.

Ближайшим аналогом является датчик напряженности электростатического поля по типу электростатического генератора, содержащий секторные измерительные электроды и вращающийся заземленный электрод-модулятор, принцип работы которого основан на периодическом экранировании измерительных электродов от поля за счет перемещения модулятора относительно чувствительных элементов.

(Имянитов И.М. Приборы и методы для измерения атмосферы. ГИТТЛ. М. 1957, с.193-200).

Целью изобретения является повышение устойчивости работоспособности датчика при эксплуатации его в условиях повышенной влажности и в воздушно-капельной среде.

Поставленная цель достигается тем, что в датчике, содержащем неподвижный заземленный экранирующий электрод с секторными вырезами, вращающийся заземленный электрод-модулятор, повторяющий форму вырезов неподвижного экранирующего электрода, и чувствительный электрод, последний выполнен в виде диска с отверстием для прохода вала модулятора. Неподвижный экранирующий электрод установлен на цилиндрическом корпусе, снабженном вырезами вдоль образующих цилиндра корпуса, причем высота вырезов равна расстоянию от внешней границы неподвижного электрода до плоскости внешней поверхности вращающегося электрода-модулятора.

На чертеже представлен схематический чертеж датчика и его расположения на верхней границе исследуемого объема.

Датчик содержит цилиндрический корпус 1 с вырезами 2, неподвижный экранирующий электрод 3, электрод-модулятор 4, чувствительный электрод 5 и изоляторы чувствительного электрода 6.

Датчик работает следующим образом.

Влага и капли, которые могут попадать на чувствительный электрод 5 и его изоляторы 6 со стороны неподвижного экранирующего электрода 3, выносятся центробежной силой при вращении модулятора 4 за пределы корпуса 1 через вырезы 2. При этом выполненный в виде диска с отверстием для вала модулятора чувствительный электрод предохраняет изоляторы от попадания на них влаги.

Таким образом, выполняется поставленная цель - повышение устойчивости работоспособности в условиях повышенной влажности и в воздушно-капельной среде.

Датчик измерителя напряженности электростатического поля, содержащий неподвижный заземленный экранирующий электрод с секторными вырезами, вращающийся заземленный электрод-модулятор, повторяющий форму вырезов неподвижного экранирующего электрода, отличающийся тем, что чувствительный электрод выполнен в виде диска с отверстием для прохода вала модулятора, а неподвижный экранирующий электрод установлен на цилиндрическом корпусе, снабженном вырезами вдоль образующих цилиндра корпуса, причем высота вырезов равна расстоянию от внешней границы неподвижного электрода до плоскости внешней поверхности вращающегося электрода-модулятора.



 

Похожие патенты:

Изобретение относится к технике измерений переменных и постоянных электрических полей и может быть использовано в приборах, где используются статические или изменяющиеся во времени электрические заряды.

Изобретение относится к электроизмерительной измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к области атмосферного электричества и может быть использовано для определения электрической проводимости атмосферы при аэрофизических, геофизических, электрохимических, метеорологических, биологических и других исследованиях.

Изобретение относится к области измерительной техники и может быть использовано для измерения напряженности электрического поля в широком пространственном диапазоне с повышенной точностью и чувствительностью.

Изобретение относится к области электрорадиотехники и может быть использовано в качестве датчика тока или датчика приближения. .

Изобретение относится к технике электроизмерений и может быть использовано для измерения динамики изменения поверхностной плотности электростатического заряда при трении поверхностей различных пар материалов в различных климатических условиях, т.е.

Изобретение относится к области измерительной техники, а именно диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации.

Изобретение относится к электротехническим измерениям, предназначено для измерения поверхностной плотности реального (полного) заряда и его среднего положения, а также поверхностных плотностей эффективных зарядов плоских диэлектриков и может быть использовано при диагностике остаточного заряжения различных диэлектрических материалов (электретов).

Изобретение относится к области электрических измерений, в частности к способам измерения электрических полей

Изобретение относится к области измерительной техники, в частности к определению электрофизических свойств диэлектрических материалов, и может быть использовано для определения постоянной времени релаксации объемного заряда диэлектрических жидкостей

Изобретение относится к измерительной технике и может быть использовано в качестве средства неразрушающего контроля энергетического состояния поверхности деталей и изделий, выполненных из электропроводящих материалов или полупроводников

Изобретение относится к подводным измерительным системам

Компенсационный электростатический флюксметр предназначен для измерения вертикальной составляющей электрического поля. Устройство содержит экранирующую и измерительную пластины, изоляторы, корпус-основание, двигатель, усилитель тока, маркированный маховик, источник подсветки, фотодиод, мост, пороговый блок, полосовой фильтр, блок приема-передачи данных и блок стабилизации скорости вращения двигателя, сетку, дополнительные изоляторы, синхронный детектор, интегратор, регулируемый источник напряжения и аналого-цифровой преобразователь. При этом экранирующая пластина электрически соединена с корпусом-основанием и расположена в нем на валу двигателя над измерительной пластиной соосно с ней, на валу также укреплен маркированный маховик, вблизи которого расположены источник подсветки и фотодиод, который через последовательно соединенные мостовую схему и пороговый блок подключен к одному из входов синхронного детектора, измерительная пластина и экранирующая пластина соединены со входами усилителя тока, а его выход через полосовой фильтр - с другим входом синхронного детектора. Выход аналого-цифрового преобразователя через блок приема-передачи данных соединен с информационным выходом устройства, вход и выход блока стабилизации скорости вращения двигателя подключены, соответственно, к выходу и входу двигателя, причем лопасти экранирующей пластины несколько повернуты в горизонтальной плоскости, сетка на дополнительных изоляторах укреплена на корпусе-основании в непосредственной близости от экранирующей пластины, выход синхронного детектора через интегратор подключен к управляющему входу регулируемого источника напряжения, а его выход подключен к сетке и ко входу аналого-цифрового преобразователя. Технический результат - повышение точности, надежности и диапазона измерения электрического поля. 2 ил.

Изобретение относится к измерительным устройствам на основе волоконно-оптических фазовых поляриметрических датчиков. Оптимизация структуры датчика, обуславливающая возникновение разноименной модуляции показателя преломления при подаче на двухканальный модулятор разности фаз напряжения одной полярности, приводит к возможности использования для модуляции фазы любой частоты управляющего сигнала и к отсутствию необходимости создания линии задержки. Повторное прохождение отраженного от зеркала света через интегрально-оптический чувствительный элемент и второе подводящее оптическое волокно с двойным лучепреломлением, а также поворот плоскости поляризации света в фарадеевском вращателе на 90 градусов и использование второго фотодетектора обеспечивают удвоение амплитуды модуляции, снижение оптических шумов источника. Техническим результатом является повышение точности измерения напряженности электрического поля и понижение частоты модуляции сигнала. 3 ил.

Изобретение относится к электрическим измерениям и может быть использовано в качестве рабочего эталона при калибровке и поверке рабочих средств измерений переменного электрического поля. Устройство выполнено на основе окружающего рабочую зону 1 конденсатора в виде набора из соосно расположенных пяти тонкостенных, металлических пластинчатых колец 2, закрепленных на диэлектрических стойках. Кольца 2 имеют одинаковую высоту H и расположены на равных расстояниях h (по высоте) друг от друга. Каждое кольцо 2 разрезано на четыре равные части, отстоящие друг от друга по окружности на равные промежутки L. Части колец расположены друг над другом симметрично относительно соответствующих частей других колец. Каждые две части соседних колец образуют отрезок двухпроводной линии передачи, на концах которого включены согласованные нагрузки 3. Входами 4 высокочастотного напряжения являются зазоры между соответствующими частями соседних колец (посередине этих частей). У каждого входа предусмотрен согласующий переход 5 в зазоре между кольцевыми элементами. Технический эффект заключается в увеличении объема рабочей зоны и повышении верхней граничной частоты воспроизведения однородного электрического поля при сохранении относительно небольших габаритных размеров устройства. 3 ил.

Устройство для обнаружения аэрозолей содержит летательный аппарат, имеющий диэлектрический элемент, такой как окно (10), размещенный в его корпусе (12), так что поверхность диэлектрического элемента образует часть наружной поверхности летательного аппарата. Средство обнаружения (16), такое как устройство для контроля статического электричества, расположено внутри летательного аппарата и предназначено для обнаружения электрического поля, возникающего в результате поляризации диэлектрического элемента внутри летательного аппарата. Выходные данные устройства для контроля статического электричества или их скорость изменения характеризуются тесным соотношением с концентрацией частиц, когда летательный аппарат пролетает через аэрозоль, например облако вулканического пепла. Технический результат заключается в упрощении конструкции устройства, а также в том, что может использоваться любой летательный аппарат общего назначения. Аэрозольные частицы можно обнаружить и наносить на карту при помощи устройства в соответствии с настоящим изобретением более простым и быстрым способом, чем посредством таких устройств, как оптические спектрометры, установленные на специальных исследовательских летательных аппаратах, или устройства для контроля статического электричества, установленные снаружи летательного аппарата. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к области измерений электростатических параметров и может быть использовано для исследования электростатических свойств различных материалов (поверхностной плотности зарядов, потенциала поверхности, время утечки зарядов) при их контактировании и последующим разделении в зависимости от различных внешних факторов: температуры, влажности, давления. Устройство для определения электризуемости материалов контактным методом содержит два электрода с диэлектрическими гнездами для исследуемых образцов, образцовые конденсаторы, выключатели заземления, переключатель цилиндров Фарадея, электрометр и кривошипно-шатунный механизм. Гнезда для образцов выполнены в виде цилиндров Фарадея, поочередное подключение которых к электрометру осуществляется замыканием измерительных ламелей выступом переключателя, который расположен на вновь введенном и закрепленном на оси кривошипа диске, а размыкание электрической связи с землей на период измерения осуществляется размыканием контактов выключателей впадиной второго вновь введенного диска. Для повышения достоверности результатов, за счет увеличения плотности контакта и исключения перекосов образцов, нижний подвижный электрод цилиндра Фарадея закреплен шарнирно со штоком кривошипно-шатунного механизма с помощью шарового шарнира. Технический результат заключается в повышении информативности и достоверности измеряемых параметров электризации. 1 з.п. ф-лы, 10 ил.
Наверх