Способ изготовления труб

Изобретение предназначено для снижения расходного коэффициента при изготовлении труб, в частности котельных труб, методом прессования с последующим редуцированием. Способ изготовления труб включает прямое прессование на пресс-игле ступенчатой формы трубы-полуфабриката с центральным каналом, состоящим из полостей переменного сечения, сопряженных между собой, и последующее редуцирование. Устранение утолщения стенки на переднем и заднем участках трубы обеспечивается за счет того, что в процессе прямого прессования уменьшают толщину стенки на переднем и заднем участках трубы-полуфабриката на величину, соответствующую увеличению толщины стенки на этих участках при редуцировании, а пресс-иглу выполняют с дополнительным коническим участком с заданными соотношениями размеров ее участков. 2 ил.

 

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении, в частности котельных труб, методом прессования с последующим редуцированием.

Известен способ изготовления труб, включающий получение исходной заготовки, прямое прессование трубы-полуфабриката и формирование из нее готовой трубы посредством редуцирования с натяжением (Манегин Ю.В. и др. Горячее прессование труб и профилей. - М.: Металлургия, 1980, с.249). Известно, что при редуцировании с натяжением условия деформации концов трубы отличаются от условий деформации середины трубы. При выходе трубы из редукционного прокатного стана концы трубы воспринимают лишь часть натяжения, в результате толщина стенки на заднем и переднем участках трубы увеличивается, что является недостатком известного способа.

В практике производства труб прессованием с последующей прокаткой известен способ изготовления труб, выбранный в качестве прототипа, включающий получение исходной трубчатой заготовки, горячее прямое прессование из нее трубы-полуфабриката с центральным каналом переменного сечения, состоящим из двух цилиндрических и промежуточной переходной полостей с заданными соотношениями их размеров, и получение из отпрессованного полуфабриката трубы-изделия посредством продольной безоправочной прокатки по заданным режимам (патент РФ №2077967, B21C 37/00, B21C 37/06, опубл. 27.04.1997).

Недостатками прототипа являются сложность регулирования параметров конического участка пресс-иглы в зависимости от длины участка трубы с утолщенной стенкой и возможность затекания материала заготовки в пространство, образованное внутренней поверхностью пуансона и наружной поверхностью подвижной пресс-иглы, а также сложность конструкции, обусловленная установкой индивидуального привода для подвижной пресс-иглы.

Техническая задача, решаемая изобретением, заключается в понижении расходного коэффициента при изготовлении труб за счет устранения утолщения стенки на переднем и заднем участках.

Поставленная задача решается за счет того, что в способе изготовления труб, включающем прямое прессование на пресс-игле ступенчатой формы трубы-полуфабриката с центральным каналом, состоящим из полостей переменного сечения, сопряженных между собой, и последующее редуцирование, согласно изобретению, в процессе прямого прессования уменьшают толщину стенки на переднем и заднем участках трубы-полуфабриката на величину, соответствующую увеличению толщины стенки на этих участках при редуцировании, а пресс-иглу выполняют с дополнительным коническим участком со следующими соотношениями размеров:

где DИГ - максимальный наружный диаметр конических участков пресс-иглы, мм;

DM - калибрующий диаметр матрицы, мм;

DK - внутренний диаметр контейнера, мм;

ΔhP - разница между номинальной толщиной стенки и максимальным значением толщины на переднем или заднем утолщенных участках трубы, мм;

LИГ - длины конических участков пресс-иглы, мм;

LP - длина утолщенного переднего или заднего участка редуцированной трубы, мм;

- коэффициент вытяжки при прессовании трубы с номинальной толщиной стенки;

- коэффициент вытяжки при прессовании трубы с утоненной стенкой на переднем и заднем участках;

λP - коэффициент вытяжки при редуцировании.

Процесс прямого прессования трубы-полуфабриката осуществляют с использованием пресс-иглы с двумя коническими участками. При этом параметры конических участков пресс-иглы описываются полученными математическими зависимостями, изначально формирующими утоненную стенку на переднем и заднем участках трубы-полуфабриката. При последующем редуцировании с натяжением условия деформации как переднего, так и заднего участков трубы отличаются от условий деформации середины трубы, когда процесс прокатки уже стабилизировался. В процессе заполнения стана передний и задний участки трубы воспринимают лишь часть натяжения, а прокатка, например в первой клети до момента захода трубы во вторую клеть, проходит без натяжения. В результате утоненная стенка утолщается, что обеспечивает получение готовой трубы с одинаковой толщиной стенки по всей длине. Таким образом, устраняют утолщение стенки на переднем и заднем участках трубы.

Изобретение поясняется чертежами, где на фиг.1 изображена конструкция пресс-иглы, на фиг.2 схематично показан в разрезе утолщенный конец редуцированной трубы.

Рабочая часть пресс-иглы имеет четыре участка: конический участок 1, обеспечивающий плавное уменьшение толщины стенки на переднем участке прессованной трубы, цилиндрический участок 2, обеспечивающий получение трубы с номинальной стенкой; второй конический участок 3, обеспечивающий плавное уменьшение толщины стенки на заднем участке прессованной трубы и второй цилиндрический участок 4.

Способ изготовления труб осуществляют следующим образом. Нагретую до заданной температуры заготовку с осевым отверстием размещают в контейнере диаметром DK и подвергают прямому прессованию с использованием неподвижной пресс-иглы (фиг.1). В результате получают трубу-полуфабрикат с наружным диаметром DM, равным диаметру отверстия матрицы, формирующему полый профиль, и внутренним центральным каналом переменного сечения, состоящим из конической полости с максимальным диаметром DИГ, уменьшающимся до диаметра DP, и двух цилиндрических полостей различных диаметров DP и DИГ, плавно сопряженных между собой переходной полостью, при этом DИГ>DP. Толщину стенки 5 на переднем и заднем участках трубы уменьшают на величину ΔhP, являющуюся разницей между номинальной толщиной стенки hHOM и максимальным значением отклонения толщины стенки готовой трубы (фиг.2). Выражение для максимального диаметра конического участка пресс-иглы, обеспечивающего уменьшение толщины стенки трубы-полуфабриката на величину ΔhP и устранение утолщенного переднего и заднего участков редуцированных труб, имеет вид:

где DИГ - максимальный наружный диаметр конических участков пресс-иглы, мм;

DM - калибрующий диаметр матрицы, мм;

DK - внутренний диаметр контейнера, мм;

ΔhP - разница между номинальной толщиной стенки и максимальным значением толщины на переднем или заднем утолщенных участках трубы, мм;

- коэффициент вытяжки при прессовании трубы с номинальной толщиной стенки;

- коэффициент вытяжки при прессовании трубы с утоненной стенкой на переднем и заднем участках.

Длину конических участков пресс-иглы определяют по формуле:

где LИГ - длина конических участков пресс-иглы, обеспечивающих плавное уменьшение стенки на переднем или заднем участках прессованной трубы, мм;

LР - длина утолщенного переднего или заднего участка редуцированной трубы, мм;

λР - коэффициент вытяжки при редуцировании.

Затем полученную трубу-полуфабрикат подвергают редуцированию с натяжением, в процессе которого ее наружный диаметр уменьшается, при этом толщина стенки уменьшается по всей длине, а на участках с утоненной стенкой - увеличивается из-за недостатка натяжения. Увеличение толщины стенки hР на переднем и заднем участках редуцированной трубы-изделия описывается линейной зависимостью:

где a, b - коэффициенты, зависящие от величины отклонения толщины стенки ΔhP;

причем , b=ΔhP+hP.

В результате получают готовую трубу с одинаковой толщиной стенки по всей длине.

Способ изготовления труб был опробован в заводских условиях при получении опытно-промышленной партии труб. В результате исследования процесса редуцирования труб по маршруту ⌀152×6→⌀73×5,5 были получены готовые трубы с утолщениями стенки на переднем и заднем участках. Анализ данных об изменении толщины стенки на переднем и заднем утолщенных участках трубы показал, что длина этих участков составляет 1200 мм и 1400 мм соответственно. Толщина стенки трубы на этих участках увеличивается на величину 2,59 мм, тогда a=-0,0018 и b=8,09. Уравнение зависимости толщины стенки на переднем и заднем утолщенном участках от их длины для трубы-изделия, редуцированной по заданному скоростному режиму, имеет следующий вид:

Для реализации предлагаемого способа была изготовлена пресс-игла, рабочая часть которой выполнена с четырьмя участками: цилиндрическим, диаметром 148,1 мм, обеспечивающим получение трубы с номинальной толщиной стенки; двумя коническими, DИГ=147,9 мм, обеспечивающими плавное уменьшение толщины стенки на переднем и заднем участках прессованной трубы, и вторым цилиндрическим участком.

Цилиндрическую заготовку из стали марки Ст.20 диаметром 335 мм и длиной 500 мм с центральным осевым отверстием диаметром 155 мм, предварительно нагретую до температуры 1100°C, загружали в контейнер диаметром 341 мм. Затем проводили ее прессование на вертикальном гидравлическом прессе усилием 55 МН в отверстие матрицы диаметром 155,1 мм. В результате получили трубу-полуфабрикат длиной 13938 мм с наружным диаметром 152 мм и толщиной стенки 6 мм на длине 13344,8 мм и последующим уменьшением толщины стенки до 2,05 мм на переднем и заднем участках длиной 508,5 мм и 593,2 мм соответственно.

Полученную трубу-полуфабрикат подвергли редуцированию с натяжением на непрерывном многоклетьевом прокатном стане, в процессе которого уменьшили ее наружный диаметр, при этом толщина стенки уменьшилась по всей длине, а на участках с утоненной стенкой - увеличилась из-за недостатка натяжения. В результате была сформирована готовая труба с одинаковой толщиной стенки по всей длине.

Таким образом, при осуществлении способа была изготовлена труба длиной 32893,68 мм с наружным диаметром 73 мм и толщиной стенки 5,5 мм, одинаковой по всей длине. Реализация заявленного способа позволила устранить утолщение стенки 2,59 мм на переднем и заднем участках трубы длиной 1200 мм и 1400 мм, соответственно, что обеспечило до 8% экономии металла.

Использование предлагаемого способа изготовления труб методом прессования с последующим редуцированием обеспечит получение труб, например котельных, с одинаковой толщиной стенки по всей длине, что позволит снизить расходный коэффициент за счет устранения утолщения стенки на концах трубы.

Способ изготовления труб, включающий прямое прессование на пресс-игле ступенчатой формы трубы-полуфабриката с центральным каналом, состоящим из полостей переменного сечения, сопряженных между собой, и последующее редуцирование, отличающийся тем, что в процессе прямого прессования уменьшают толщину стенки на переднем и заднем участках трубы-полуфабриката на величину, соответствующую увеличению толщины стенки на этих участках при редуцировании, а пресс-иглу выполняют с дополнительным коническим участком со следующими соотношениями размеров:


где DИГ - максимальный наружный диаметр конических участков пресс-иглы, мм;
DM - калибрующий диаметр матрицы, мм;
DK - внутренний диаметр контейнера, мм;
ΔhP - разница между номинальной толщиной стенки и максимальным значением толщины стенки на переднем или заднем утолщенных участках трубы, мм;
LИГ - длины конических участков пресс-иглы, мм;
LP - длина утолщенного переднего или заднего участка редуцированной трубы, мм;
- коэффициент вытяжки при прессовании трубы с номинальной толщиной стенки;
- коэффициент вытяжки при прессовании трубы с утоненной стенкой на переднем и заднем участках;
λР - коэффициент вытяжки при редуцировании.



 

Похожие патенты:

Изобретение относится к области обработки металла давлением, а точнее, к трубоэлектросварочному производству и может быть использовано как при проектировании новых, так и при модернизации работающих конструкций четырехвалковых клетей формовочных и профильно-калибровочных станов.

Изобретение относится к трубосварочному производству, а точнее к формовочным клетям трубопрофильного стана. .

Изобретение относится к обработке металлов давлением, в частности к производству сварных труб на непрерывных трубосварочных агрегатах. .

Изобретение относится к области машиностроения и может быть использовано в судостроении, энергетике, нефтяной и газовой промышленности для изготовления изогнутых трубопроводов.

Изобретение относится к обработке металлов давлением, в частности к инструменту трубоформовочных станов. .

Изобретение относится к обработке металлов давлением, в частности к производству сварных труб на непрерывных трубосварочных агрегатах. .

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении круглых сварных прямошовных труб различного назначения. .

Изобретение относится к обработке металлов давлением, а именно к производству электросварных труб, и может быть использовано для клетей с закрытыми калибрами трубоформовочных станов.
Изобретение относится к области изготовления труб из конструкционных среднеуглеродистых или низколегированных сталей, а именно к способу изготовления насосно-компрессорных труб (НКТ) и может найти применение в нефтяной и газовой промышленности.

Изобретение относится к трубосварочному производству, а точнее к производству труб большого диаметра из заготовок конечной длины. .

Изобретение относится к обработке металлов давлением и может быть использовано, в частности, на непрерывных трубосварочных агрегатах

Изобретение относится к области обработки металлов давлением, в частности для профилирования материала

Изобретение относится к способам герметизации труб для защиты их внутренней поверхности от воздействия атмосферы печи при нагреве, штамповке и термообработке в процессе изготовления крутоизогнутых отводов труб из высоколегированной стали

Изобретение предназначено для получения круглых в значительной степени труб (104) со стыковым швом с узким стыком, или зазором, (111) из металлических листов. Металлический лист подают на трубоформовочный пресс (1), в котором он, лежа на нижнем штампе (6), с помощью поднимаемого и опускаемого верхнего штампа (9) под действием усилия гибки поэтапно формуется в трубу (4; 104) со стыковым швом. Уменьшение вероятности искажения формы трубы обеспечивается за счет того, что вначале формуют трубу со стыковым швом некруглой черновой формы (13), для чего по меньшей мере на одном этапе гибки, действующей на внутреннюю сторону металлического листа (3), соответственно, слева и справа относительно середины, заданной продольной осью верхнего штампа (9), погружающегося в поступательно формируемый металлический лист (3), осуществляется меньшая формовка по сравнению с другими этапами гибки и что после этого под действием соответствующего усилия (F) закрытия, целенаправленно действующего снаружи на некруглую черновую форму (13) соответственно на ранее менее отформованных участках (12а, 12b) по обе стороны от середины, отформовывается готовая труба (104) со стыковым швом. Устройство имеет соответствующее оборудование. 2 н. и 5 з.п. ф-лы, 4 ил.
Изобретение относится к области обработки металлов давлением, в частности к технологии и оборудованию для производства прямошовных магистральных труб в трубоформовочных цехах металлургических предприятий. Способ включает формовку трубы из листовой заготовки с предварительной подгибкой продольных кромок и последующей U-образной или О-образной деформацией указанной заготовки, а также приварку технологических планок в зоне соединяемых при помощи сварки продольных боковых кромок листовой заготовки, обработку кромок указанных краев и их сварку с образованием продольного соединительного шва труб. Стабильный процесс сварки на всем протяжении продольного соединительного шва и повышение качества готовых магистральных труб обеспечиваются за счет того, что для каждой листовой заготовки технологические планки изготовляют из технологической обрези, полученной при производстве листовых заготовок той же плавки, что и заготовка, причем используют обрезь с толщиной, соответствующей толщине этой заготовки, а приварку планок к торцам листовой заготовки и обработку продольных кромок этой заготовки производят до ее формовки, осуществляя приварку таким образом, чтобы зазор между соседними планками после соединения краев заготовки перед сваркой продольного шва трубы не превышал 6 мм, после чего последовательно проводят сварку технологического, а также внутреннего и наружного соединительных швов, причем настройку сварочного инструмента и параметров процесса проводят на технологических планках с выходом на стабильный режим сварки непосредственно в зоне соединения краев трубной заготовки. 1 пр.

Изобретение относится к области производства сварных труб на непрерывных трубосварочных агрегатах. Способ включает использование штрипсов с шириной, имеющей запас на утяжку по ширине при деформации, сварку встык концов штрипсов в непрерывную полосу, ее деформацию путем знакопеременного пластического изгиба с натяжением неприводными роликами многороликового гибочно-натяжного устройства, протягивание через это устройство полосы тянущим устройством, формовку полосы в трубную заготовку, сварку ее кромок и калибровку или профилирование сваренной трубы. Определяют фактическую величину вытяжки полосы в гибочно-натяжном устройстве. Повышение степени деформации полосы и снижение расхода металла обеспечивается за счет того, что измеряют толщину полосы на входе в гибочно-натяжное устройство, рассчитывают величину вытяжки для участков полосы с толщиной более Hгран и величину вытяжки для ее участков с толщиной в диапазоне от hмин до Hгран и путем изменения суммарной величины углов всех изгибов полосы регулируют ее вытяжку таким образом, чтобы фактическая величина вытяжки равнялась ее расчетной величине. Указанные параметры регламентируются математическими зависимостями. 1 табл.

Изобретение относится к способу изготовления биметаллических насосно-компрессорных труб и может использоваться при получении трубной продукции или ремонте насосно-компрессорных труб (НКТ). Способ включает очистку наружной и внутренней поверхности насосно-компрессорной трубы (НКТ) от отложений и загрязнений, изготовление из углеродистой, низколегированной или нержавеющей стали тонкостенной электросварной трубы , нанесение на ее наружную поверхность клея-герметика, введение в канал НКТ тонкостенной электросварной трубы с нанесенным клеем. Затем осуществляют совместную деформацию путем раздачи НКТ и упомянутой электросварной трубы, нарезание резьбы , контроль качества полученной трубы и испытание гидравлическим давлением. Тонкостенную электросварную трубу изготавливают из стали с содержанием примесей серы и фосфора не более 0,01%. При совместной деформации НКТ и электросварной трубы путем раздачи обеспечивают увеличение диаметра электросварной трубы более 18% от исходного наружного ее диаметра. Технический результат заключается в повышении пластичности и деформируемости в холодном состоянии лейнера без разрушения сплошности основного металла и сварного соединения. 2 пр.

Изобретение относится к технологии упрочнения труб нефтяного сортамента из микролегированных карбидо- и нитридообразующими элементами сталей непосредственно в процессе горячей деформации. Способ прокатки труб с термомеханической обработкой включает нагрев трубной заготовки до 1150-1300°C, прошивку и последующее деформирование с суммарной радиальной степенью деформации не менее 70%, при этом радиальная степень деформации на каждом этапе деформирования после прошивки не должна превышать 35%. Перед последним этапом деформирования черновая труба с температурой 700-880°C подвергается ускоренному индукционному нагреву до температуры 850-1000°C, после чего не позднее чем через 5 с осуществляются окончательная деформация в калибровочном или редукционном стане и охлаждение на воздухе. Технический результат заключается в улучшении потребительских свойств трубы за счет исключения разнозернистости структуры, увеличения вязкости и пластичности стали, повышения прочностных свойств стали. 1 з.п. ф-лы, 1 табл.
Наверх