Способ получения экологически чистого высокооктанового бензина


 


Владельцы патента RU 2442767:

Учреждение Российской Академии наук Ордена Трудового Касного Знамени Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) (RU)
Открытое акционерное общество "Электрогорский институт нефтепереработки"(ОАО "ЭлИНП") (RU)

Изобретение относится к нефтехимии и, более конкретно, к способу получения бензина путем каталитической конверсии смеси H2, CO и CO2 через диметиловый эфир и может быть использовано для получения высокооктанового бензина. Способ получения экологически чистого бензина с октановым числом 92-93 по исследовательскому методу включает стадию синтеза ДМЭ из синтез-газа в реакторе синтеза оксигенатов, парогазовая смесь из реактора синтеза оксигенатов без промежуточного их отделения от непревращенных компонентов поступает на стадию синтеза углеводородов из ДМЭ, проводимого в присутствии катализатора на основе цеолита типа пентасилов, содержащего оксид цинка и палладий, затем контактная смесь поступает в сепараторы, где происходит ее разделение на водную, углеводородную и газовую фазы, газовую фазу разделяют на два потока, первый поток рециркулирует в реактор синтеза оксигенатов (получения диметилового эфира) Технический результат - улучшение качества бензина за счет снижения содержания дурола, повышение селективности по C5+, повышение производительности процесса, возможность применять синтез-газ практически любого состава для получения высокооктанового бензина. 3 з.п. ф-лы, 2 табл.

 

Изобретение относится к нефтехимии и, более конкретно, к способу получения бензина путем каталитической конверсии смеси H2, CO и CO2 через диметиловый эфир и/или метанол и может быть использовано для получения высокооктанового бензина.

Наряду с ростом цен на нефть и общей готовностью искать альтернативные источники углеводородов внимание специалистов крупных компаний сосредотачивается на способах преобразования этих углеводородов в пригодные для использования формы. В связи с эти весьма актуальным становится вовлечение в переработку альтернативных нефти источников углеродсодержащего сырья, таких как природный газ, попутные нефтяные газы, тяжелый мазут, уголь и шламы его переработки, торф, растительная биомасса и т.д., с целью получения высокооктановых компонентов бензина. При этом очень важно получать высококачественный бензин, соответствующий международным требованиям европейского стандарта Евро-4, введенного в действие с 2005 г., который ограничивает содержание ароматических соединений в автобензинах до 30% и, в частности бензола менее 1%.

Первой стадией переработки синтез-газа, полученного из любого углеродсодержащего сырья, в бензин является конверсия его в оксигенаты: ДМЭ и/или MeOH, а второй - превращение оксигенатов в углеводороды.

Все известные способы получения углеводородов бензинового ряда из CO и H2 можно разделить на две основные группы:

- одностадийные процессы, в которых стадия синтеза оксигенатов и углеводородов совмещены путем использования двухкомпонентных катализаторов;

- двухстадийные процессы, в которых синтез оксигенатов и синтез углеводородов проводятся в разных реакторах в присутствии металлоксидных и цеолитных катализаторов соответственно.

Примерами одностадийного способа получения является техническое решение, описанное в заявке WO 2006/126913 A2, согласно которому способ включает в себя получение из синтез-газа метанола, последующую дегидратацию его в ДМЭ и конверсию ДМЭ в бензин, которые осуществляются в одном реакторе. Для достижения высоких конверсий синтез-газа используют циркуляцию газового потока.

Недостатком процесса является высокое содержание ароматических углеводородов (до 60 мас.%).

Одним из первых примеров осуществления двухстадийного способа получения синтетического бензина из синтез-газа является патент СССР №632296, кл. C07C 1/04, B01J 23/80, 1978. Углеводороды получают контактированием окиси углерода и водорода на первой стадии с окисным катализатором синтеза метанола и твердым кислотным неорганическим катализатором дегидратации при 149-372°С с последующим контактированием на второй стадии продуктов первой стадии при 260-455°С с кристаллическим цеолитом. В качестве окисного катализатора синтеза метанола используют смесь окислов меди, хрома, цинка и лантана, взятых в количестве 50-70; 5-15; 15-25; 5-15 вес.ч. соответственно.

Получаемый продукт содержит не менее 30% ароматических углеводородов, среди которых не менее 6% приходится на тетраметилбензол (дурол). Известно, что дурол является нежелательным компонентом топлива, приводящим к сажевым отложениям в карбюраторе и, вследствие высокой температуры плавления (79°С), затрудняющим работу двигателя.

Другим примером является способ, описанный в патентах США №4481305 и 4520216, кл. C07C 1/04, C07C 1/20, 1984, где синтез-газ, имеющий мольное отношение CO/H2 выше 1 и CO/CO2 - от 5 до 20, поступает в реактор синтеза оксигенатов, где контактирует с одним или более катализаторами при температуре 150-400°С и давлении 5-100 бар, а затем газовая смесь без выделения промежуточных продуктов направляется во второй реактор, где в присутствии цеолитного катализатора при температуре 150-600°С ДМЭ превращается в углеводороды.

Общими недостатками описанных способов являются невысокая селективность процесса по углеводородам С5+ и высокое содержание ароматических углеводородов ~40% (в том числе дурола не менее 4%).

Известен способ получения высокооктанового бензина путем переработки синтез-газа в углеводороды в две стадии, описанный в патенте РФ №2143417, C07C 1/04, 27.12.1999 г. На первой стадии исходное сырье контактирует с катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного компонента, содержащего (мас.%): CuO - 38-64, ZnO - 21-34, Cr2O3 - 0-22, Al2O3 - 6-9, смешанных в массовом соотношении 20-50/80-50, газовый поток после реактора первой стадии охлаждают и разделяют на жидкую фракцию и газовую фазу, содержащую непревращенные компоненты синтез-газа и диметиловый эфир, при этом из жидкой фракции далее выделяют диметиловый эфир, а газовую фазу делят на два потока - один идет на смешение с синтез-газом и подается в реактор первой стадии, второй газовый поток направляют на вторую стадию, где при контакте с катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного компонента, содержащего (мас.%) ZnO - 65-70, Cr2O3 - 29-34, W2O5 - 1, смешанных в массовом соотношении 30-99/70-1, происходит превращение диметилового эфира и компонентов синтез-газа в бензиновую фракцию, газообразные углеводороды и водную фракцию. Водную фракцию путем дистилляции делят на воду и метанол, при этом воду используют для приготовления смеси H2, CO и CO2, а метанол направляют на стадию синтеза бензина.

По словам авторов, высокий выход бензиновой фракции достигается путем применения циркуляции, а также за счет использования во втором реакторе бифункционального катализатора, позволяющего дополнительно конвертировать непрореагировавшие оксиды углерода и водород в жидкие углеводороды. Однако организация двухстадийного процесса, как предлагается в данном способе, с независимыми циркуляциями на первой и второй стадии предусматривает наличие двух циркуляционных насосов высокого давления, а значит, существенное увеличение капитальных и эксплуатационных затрат, что можно отнести к недостаткам способа. Кроме того, технический результат не подтвержден ни описанием патента, ни таблицей, которые в данном патенте отсутствуют. Данный способ взят за прототип в Патенте РФ №2175960, C07C 1/02, и в таблице этого патента приведены результаты одного из характерных примеров вышеуказанного технического решения, в котором показан высокий выход ароматических углеводородов (более 40 мас.%).

Наиболее близким по техническому результату является способ получения высокооктанового бензина по патенту РФ №2248341, C07C 1/20, B01J 29/44, опубл. 20.03.2005 г. Согласно выбранному прототипу синтез углеводородов осуществляют в двухконтурном реакционном узле, включающем реактор синтеза ДМЭ из синтез-газа (мольное отношение H2/CO не менее 2) и реактор синтеза углеводородов из ДМЭ, проводимого в присутствии катализатора на основе цеолита типа пентасилов, содержащего оксид цинка и палладий, под давлением 10 МПа при температуре 340°С и объемной скорости подачи сырья 1000-4000 ч-1. Оба реактора работают в проточном режиме.

Процесс проводят в присутствии катализатора на основе цеолитов типа пентасилов с SiO2/Al2O3=25-100, содержащего не более 0,11 мас.% оксида натрия, 0,1-3 мас.% оксида цинка и связующее, который содержит палладий и другие компоненты в следующих соотношениях, мас.%: оксид цинка 0,1-3; палладий 0,1-1; цеолит 50-70 и остальное - связующее.

Полученный продукт содержит до 69% изо-парафинов и до 47% ароматических углеводородов.

Однако производительность процессов, проводимых в проточном режиме, как правило, невысока. В данном случае она не превышает 30 г/м3 синтез-газа.

Задачей предлагаемого изобретения является увеличение производительности процесса получения высокооктанового бензина, повышение селективности по углеводородам C5+ и качества образующегося бензина, а именно снижение содержания ароматических углеводородов, в частности тетраметилбензола - дурола.

Поставленная задача решается тем, что предложен способ получения экологически чистого бензина с октановым числом 92-93 по исследовательскому методу, включающий стадию синтеза ДМЭ из синтез-газа и стадию синтеза углеводородов из ДМЭ, проводимого в присутствии катализатора на основе цеолита типа пентасилов, содержащего оксид цинка и палладий, в котором процесс ведут в циркулирующем режиме так, что поток, выходящий после проведения стадии синтеза углеводородов, возвращают на рециркуляцию в реактор получения диметилового эфира.

Причем на стадии синтеза диметилового эфира процесс проводят при давлении 5-10 МПа и температуре 220-300°С, а на стадии синтеза углеводородов - при давлении 5-10 МПа и температуре 340-360°С, при кратности циркуляции 5-15 объема циркулирующего газа на объем исходного газа (об./об.).

Предлагаемое изобретение позволяет достичь следующих технических результатов:

- увеличить производительность процесса;

- повысить селективность по углеводородам C5+;

- снизить содержание дурола и в некоторых случаях содержание ароматических соединений в жидких продуктах;

- применять синтез-газ практически любого состава для получения высокооктанового бензина.

В предлагаемом изобретении указанные технические результаты достигаются за счет использования катализаторов по прототипу, а также циркуляции газового потока, состоящего из непрореагировавших компонентов синтез-газа и несконденсированных легких углеводородов C1-C4, который, во-первых, положительно влияет на распределение градиента температуры в реакторе, обеспечивает снижение доли нежелательных вторичных реакций крекинга образующихся углеводородов и алкилирования первичных ароматических углеводородов в результате уменьшения времени контакта сырья.

Предлагаемый способ получения высокооктанового бензина позволяет повысить выход углеводородов бензиновой фракции от 70 до 79% на сумму получаемых углеводородов, увеличить производительность процесса от 30 до 120 г/м3 синтез-газа, снизить содержание дурола от 9,0 до не более 1,5 мас.% и в некоторых случаях ароматических соединений от 27 до 16 мас.% в составе получаемых жидких продуктов.

Промышленная применимость заявляемого способа иллюстрируется примерами 2-9, примером 1 - прототип.

Пример 1 (по прототипу)

Катализатор, полученный по методике, описанной в прототипе, и имеющий состав (мас.%) ZnO - 0,1-3,0; Pd - 0,1-1,0; цеолит ЦВМ - 50,0-70,0; связующее - остальное, используют для получения высокооктановых компонентов бензина. В качестве сырья используют газовую смесь, образовавшуюся в процессе синтеза ДМЭ из синтез-газа (мольное отношение H2/CO=2,8) в проточном реакторе, включенном в схему процесса. Процесс проводят под давлением 10 МПа при температуре 340°С и объемной скорости подачи сырья 1000 ч-1 с невысокой производительностью 30 г/м3 поданного СИ-газа. Данные, полученные при применении описанного способа, приведены в табл.1. Выход C5+-углеводородов на сумму углеводородов составляет 70,4 мас.%. Полученный продукт содержит 61,5 мас.% изо-парафинов и 27 мас.% ароматических углеводородов. В составе ароматических углеводородов доминируют триметилбензол и тетраметилбензол - дурол.

Примеры 2-7

Исходный синтез-газ подают в двухреакторный реакционный контур на смешение с циркулирующим в контуре газом. Контур состоит из реактора синтеза оксигенатов, реактора синтеза углеводородов и циркуляционного насоса. Газовый поток, состоящий из исходного синтез-газа и циркулирующего газа, поступает в первый реактор, в котором при давлении 5-10 МПа и в интервале температур 220-300°С на комбинированном металлооксидном катализаторе состава CuO - 23,25; ZnO - 23,25; Cr2O3 - 16,6; Al2O3 - 36,9, разработанном и запатентованном ИНХС РАН (Патент РФ №2218988, 2003 г.), осуществляется синтез оксигенатов (ДМЭ и метанола - MeOH). Затем парогазовая смесь из реактора синтеза оксигенатов без промежуточного их отделения от непревращенных компонентов синтез-газа поступает во второй реактор, где в присутствии цеолитного катализатора по прототипу при том же давлении, что и в реакторе синтеза оксигенатов, и температуре 340-360°С осуществляют синтез углеводородов. Контактная смесь из реактора поступает в последовательно соединенные сепараторы, где происходит разделение ее на водную, углеводородную и газовую фазу. Газовая фаза, содержащая непрореагировавшие компоненты синтез-газа и легкие углеводородные газы C1-C4, разделяется на два потока. Первый поток поступает на вход циркуляционного насоса и возвращается в реактор синтеза оксигенатов. Второй (отдувочный) поток используется для технических нужд. Полученные результаты представлены в таблице 1.

При сравнении данных, полученных по прототипу и по предлагаемому способу, видно, что использование циркуляции позволяет не только существенно (в 4 раза) поднять производительность процесса, но и значительно улучшить состав получаемого бензина. Полученный бензин характеризуется высоким суммарным содержанием изо- и цикло-парафинов не менее 70 мас.%, содержание ароматических углеводородов составляет около 20 мас.%, причем основная часть ее представлена пара- и мета-ксилолами, а содержание тетраметилбензола (дурола) не превышает 1,5%. Показатели процесса практически не зависят от состава исходного сырья.

Таблица 1
Условия опыта и основные показатели процесса получения углеводородов
№ примера
Условия опыта и 1 2 3 4 5 6 7
основные показатели (прототип)
Давление, МПа 10 10 10 7 5 10 10
Т первой стадии, °С 280 280 280 300 280 280 280
Т второй стадии, °С 340 340 340 360 340 340 340
Состав исходного
синтез-газа,
поступающего на
первую стадию
синтеза оксигенатов, об.% 67 59 59 59 59 75 74
H2 24 33 33 33 33 13 2,7
CO 2 2 2 2 2 7 19
CO2 7 5 5 5 5 5 4,4
N2
Об. скорость подачи 1000 533 750 750 750 850 850
исходного газа, ч-1
Кратность 0 10 6 6 6 10 6
циркуляции (об./об.)
Селективность
превращения СО в:
ДМЭ 65,4 76,1 71,0 60,4 56,2 34,6 37,9
MeOH 2,5 14,4 17,2 22,3 27,6 65,4 62,1
CO2 32,1 9,4 11,8 17,3 12,8 - -
Конверсия, %
CO 91,2 86,6 90,2 86,3 91,9 79,2
CO2 - - - - 76,6 93,4
ДМЭ/MeOH 99 100 100 98,9 100 99,9 98,4
Состав бензиновой
фракции, мас.%:
Н-парафины 4,7 8,3 10,8 9,8 10,2 9,2 11,1
Изо-парафины 61,5 59,5 60,5 56,5 51,8 62,3 63,1
циклопарафины 6,8 12,6 12,6 9,5 8,0 8,3 8,6
Ароматические у/в, 27,0 19,6 16,1 24,2 30 20,2 17,2
в т.ч.:
бензол 0 0 0 0 0 0 0
толуол 0,4 0,3 0,3 0,3 0,4 0,3 0,3
ксилолы 9,7 16,2 13,2 19,1 23,9 16,0 13,6
триметилбензол 7,5 0,8 0,7 1,1 1,9 1,5 1,4
тетраметилбензол
(дурол) 9,0 1,1 0,8 1,3 2,5 1,0 0,7
остальное этил-,
изопропилбензол и 0,4 1,2 1,1 2,4 1,3 1,0 1,2
др.
Выход C5+ на ∑ углеводородов, мас.% 70,4 79,3 76,9 74,6 67,2 75,1 73,2
Производительность, До 30 118 120 122 117 119 120
г/м3 СИ-газа

Пример 8

Синтез углеводородов проводят аналогично примеру 2. С целью получения информации об изменении показателей процесса, характеризующих стабильность катализатора, во времени осуществляют длительный пробег (не менее 600 часов). В качестве исходного сырья используют синтез-газ состава (об.%): H2 - 59, CO - 33, CO2 - 2, N2 - 5.

Условия и основные показатели процесса получения углеводородов из синтез-газа представлены в табл.2.

Пример 9

Синтез углеводородов проводят аналогично примеру 8 с той разницей, что в качестве исходного сырья используют синтез-газ состава (об.%): H2 - 75, CO - 13, CO2 - 7, N2 - 5.

Условия и основные показатели процесса получения углеводородов из синтез-газа представлены в табл.2.

Таблица 2
Влияние длительности пробега на основные показатели процесса получения углеводородов
№ примера
Условия опыта и основные показатели 8 9
Длительность испытаний, час 100 300 600 100 300 600
Давление, МПа 10 10
Т первой стадии, °С 280 280
Т второй стадии, °С 340 340
Состав синтез-газа,
об.%:
H2 59 75
CO 33 13
CO2 2 7
N2 5 5
Об. скорость подачи
исходного газа, ч-1 533 850
Кратность циркуляции
(об./об.) 10 10
Конверсия, %
CO 91,2 88,0 91,2 91,9 91,2 91,0
CO2 - - - 76,6 75,9 75,9
ДМЭ/MeOH 100 99,8 99,9 99,9 100,0 99,8
Состав бензиновой фракции, мас.%:
Изо-парафины 59,5 60,0 59,0 62,3 61,9 61,5
Н-парафины 8,3 9,0 8,8 9,2 9,6 9,4
циклопарафины 12,6 10,8 11,4 8,3 9,0 8,8
Ароматические у/в, 19,6 20,2 20,8 20,2 19,5 20,3
В том числе:
бензол 0,0 0,0 0,0 0,0 0,0 0,0
дурол 0,9 1,1 1,1 0,8 1,2 1,4
Выход C5+ на Σ
углеводородов, мас.% 79,3 78,1 78,2 75,1 74,5 74,2
Производительность, 117 116 117 120 121 121
г/м3 СИ-газа

Примеры 8 и 9 демонстрируют практическую применимость предлагаемой технологии для получения высокооктанового бензина из синтез-газа любого состава. Показатели процесса остаются неизменными в течение всего периода испытаний (от 100 до 600 часов). Полученный бензин характеризуется высоким суммарным содержанием изо- и цикло-парафинов не менее 70 мас.%, содержание ароматических углеводородов составляет около 20 мас.%, причем основная часть ее представлена пара- и мета-ксилолами, а содержание тетраметилбензола (дурола) не превышает 1,5%.

Предлагаемая технология позволяет получать качественный и экологически чистый высокооктановый бензин (о.ч. не менее 90 пунктов по ИМ), отвечающий нормам международного стандарта и не содержащий практически дурола.

Кроме того, предлагаемое техническое решение также позволяет увеличить производительность процесса получения высокооктанового бензина до 116-121 г/м3 СИ-газа по сравнению с производительностью процесса, проводимого в условиях прототипа - 30 г/м3 СИ-газа.

1. Способ получения экологически чистого бензина с октановым числом 92-93 по исследовательскому методу, включающий стадию синтеза ДМЭ из синтез-газа и стадию синтеза углеводородов из ДМЭ, проводимого в присутствии катализатора на основе цеолита типа пентасилов, содержащего оксид цинка и палладий, отличающийся тем, что стадию синтеза диметилового эфира осуществляют в реакторе синтеза оксигенатов, парогазовая смесь из реактора синтеза оксигенатов без промежуточного их отделения от непревращенных компонентов синтез-газа поступает в реактор синтеза углеводородов из ДМЭ, контактная смесь из реактора поступает в сепараторы, где происходит разделение ее на водную, углеводородную и газовую фазы, газовую фазу разделяют на два потока, первый поток рециркулируют в реактор синтеза оксигенатов (получения диметилового эфира).

2. Способ получения экологически чистого бензина по п.1, отличающийся тем, что процесс на стадии синтеза диметилового эфира проводят при давлении 5-10 МПа и температуре 220-300°С.

3. Способ получения экологически чистого бензина по п.1, отличающийся тем, что процесс на стадии синтеза углеводородов проводят при давлении 5-10 МПа и температуре 340-360°С.

4. Способ получения экологически чистого бензина по п.1, отличающийся тем, что процесс ведут при кратности циркуляции 5-15 об./об.



 

Похожие патенты:

Изобретение относится к реактору синтеза Фишера-Тропша псевдоожиженного слоя газ-жидкость-твердое. .
Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для получения экологически чистого дизельного топлива. .

Изобретение относится к получению синтез-газа в способе получения керосина и газойля из природного газа. .

Изобретение относится к области нефтехимии, газохимии, углехимии, в частности к синтезу углеводородов C5 и выше из СО и Н2 по реакции Фишера-Тропша. .

Изобретение относится к области переработки углеводородного сырья путем деасфальтизации. .

Изобретение относится к области переработки углеводородного сырья путем деасфальтизации. .

Изобретение относится к способу переработки одного или более углеводородов, включающему: объединение одного или более сырья, включающего одну или более тяжелых нефтей, одну или более легких нефтей и один или более асфальтенов, с одним или более растворителями с получением первой смеси; селективное отделение одного или более асфальтенов от первой смеси с получением второй смеси, включающей один или более растворителей, одну или более тяжелых деасфальтированных нефтей и одну или более легких деасфальтированных нефтей; селективное отделение одной или более тяжелых деасфальтированных нефтей от второй смеси с получением третьей смеси, включающей один или более растворителей и одну или более легких деасфальтированных нефтей; селективное отделение одного или более растворителей от третьей смеси с извлечением одной или более легких деасфальтированных нефтей; крекинг по меньшей мере части одной или более излеченных тяжелых деасфальтированных нефтей с использованием установки термического крекинга с получением одного или более продуктов легких углеводородов; и объединение одного или более продуктов легких углеводородов с легкими деасфальтированными нефтями с формированием одного или более продуктов.

Изобретение относится к способу превращения монооксида углерода в углеводороды С2 + в присутствии водорода и металлсодержащего катализатора в многотрубчатом реакторе, содержащем указанный катализатор, нанесенный на носитель на основе вспененного карбида кремния, осуществляемому в следующих рабочих условиях: WH (GHSV) изменяется от 100 до 5000 час-1 и WHSV изменяется от 1 до 100 час-1.
Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при переработке нефти. .
Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при переработке нефти. .

Изобретение относится к одностадийному способу газофазного получения бутадиена, включающему превращение этанола или смеси этанола с ацетальдегидом в присутствии катализатора, характеризующемуся тем, что взаимодействие проводят в присутствии твердофазного катализатора, содержащего металл, выбранный из группы: серебро, золото или медь, и оксид металла, выбранный из группы оксид магния, титана, циркония, тантала или ниобия.

Изобретение относится к области органической химии и катализа. .
Изобретение относится к способу переработки газов и паров, содержащих от 30 до 60 ат.% углерода, а также до 70 ат.% кислорода и водорода, путем воздействия ускоренными электронами на содержащую их сырьевую смесь с получением продуктов радиолиза, в процессе которого из продуктов радиолиза постоянно удаляют конденсируемую фракцию, включающую целевой продукт, а оставшуюся часть смешивают с исходным газом и/или паром с получением сырьевой смеси, причем в сырьевую смесь добавляют водород, или водородсодержащие соединения углерода, или конденсируемую низкокипящую фракцию с температурой кипения ниже, чем у целевого продукта, поддерживая в реакционной смеси содержание углерода в пределах от 16 до 35 ат.%, не допуская при этом превышения содержания кислорода выше 23 ат.%.

Изобретение относится к способу разложения высококипящих побочных продуктов производства изопрена из изобутилена и формальдегида путем смешения высококипящих побочных продуктов с перегретым водяным паром и контакта с катализатором в одно- или двухполочных реакторах при нагревании с получением изопрена, формальдегида и изобутилена, характеризующемуся тем, что жидкие высококипящие побочные продукты сначала испаряют и перегревают до температуры 300-350°С совместно с водяным паром в соотношении 1:1,0-1,2 в конвекционной части пароперегревательной печи в системе прямых труб, снабженных выносным коллектором, затем смешивают в смесителе с перегретым водяным паром до весового соотношения 1:3,0-4,0, после чего с температурой 400-450°С подаются в реактор, в надкатализаторной зоне которого расположена отбойно-распределительная решетка с общим живым сечением 15%, снабженная отверстиями 20 мм и колпачками диаметром 100 мм и высотой 80 мм.

Изобретение относится к способу получения трет-пентена(ов) и/или алкил С1-С2-трет-пентилового эфира из смесей преимущественно С5-углеводородов, содержащих как минимум трет-пентены, изопентан и примесь пентадиена(ов), и спирта С1-С2, включающему взаимодействие трет-пентена(ов) со спиртом С1-С2 на твердом кислом катализаторе и выделение продуктов ректификацией, характеризующемуся тем, что в исходной смеси проводят как минимум катализируемую изомеризацию 2-метил-1-бутена в 2-метил-2-бутен [возможно в присутствии водорода], образующуюся смесь подвергают ректификации и выводят дистиллят, содержащий преимущественно изопентан, и кубовый остаток, содержащий преимущественно 2-метил-2-бутен, часть которого предпочтительно подвергают в зоне(ах) синтеза эфира(ов) катализируемому взаимодействию со спиртом C1-C2, из образующейся смеси отгоняют дистиллят, содержащий смесь непрореагировавших С 5-углеводородов со спиртом, который далее используют для получения эфира(ов), предпочтительно возвращая в зону синтеза эфира(ов), и выводят кубовый остаток, содержащий алкил С 1-С2-трет-пентиловый эфир, который отбирают в качестве продукта и/или подвергают катализируемому разложению и с помощью ректификации и очистки от спирта выделяют смесь чистых трет-пентенов.

Изобретение относится к вариантам способа превращения оксигенированных органических соединений в углеводороды, один из которых включает стадии: (а) введения сырьевого потока синтез-газа в секцию синтеза для получения легко конвертируемых оксигенатов, (b) пропускания выходящего из указанной секции синтеза потока, содержащего легко конвертируемые оксигенаты, в секцию синтеза бензина, (с) пропускания выходящего из указанной секции синтеза бензина потока в сепаратор и извлечения из указанного сепаратора углеводородов, кипящих в интервале кипения бензиновой фракции, (d) смешения рециркулирующего из сепаратора потока, содержащего непрореагировавший синтез-газ и летучие углеводороды, с сырьевым потоком синтез-газа стадии (а), (е) введения сырьевого материала, содержащего трудно конвертируемые оксигенаты, в секцию синтеза стадии (а), в котором легко конвертируемые оксигенаты включают соединения, выбранные из группы, состоящей из метанола, этанола, диметилового эфира, ацетона, пропанола, диэтилового эфира, изобутанола, пропиональдегида или их смесей, и в котором сырье, содержащее трудно конвертируемые оксигенаты, включает соединения, выбранные из группы, состоящей из формальдегида, ацетальдегида, гидроксиалдегида, глиоксаля, ацетола, уксусной кислоты, МеОАс, EtOAc, фурфурола, фурилового спирта, фенола, анизола, пирокатехина, гваякола, крезола, крезолола, эвгенола, нафтола или их смесей.

Изобретение относится к способу получения разветвленных насыщенных углеводородов, характеризующемуся тем, что на первой стадии сырье, содержащее, по меньшей мере, одну жирную кислоту, имеющую общее количество атомов углерода от 8 до 26, этерифицируют, по меньшей мере, одним жирным спиртом, имеющим общее количество углерода от 8 до 26, с получением сложных эфиров, на второй стадии полученные сложные эфиры гидрируют до жирных спиртов, на третьей стадии полученные жирные спирты дегидратируют до альфа-олефинов, на четвертой стадии альфа-олефины олигомеризуют в олигомеры, а на пятой стадии олигомеры гидрируют.

Изобретение относится к способу сепарации газа крекинга метанола и производства малоуглеродистого алкена полимеризационного уровня, содержащему: (1) стадию сжатия, в которой газ крекинга метанола поступает в компрессорную систему с многоступенчатым сжатием, при этом давление газа крекинга метанола, подверженного трехступенчатому или четырехступенчатому сжатию, достигает до 1,1-2,5 МПаГ; (2) стадию обезвреживания, в которой газ крекинга метанола, сжатый в стадии (1), очищается от примесей на системе обезвреживания, в результате получается рафинированный газ крекинга, при этом концентрация CO2 в газе крекинга метанола, обработанном в стадии обезвреживания, составляет менее 1 ppm, и/или общее содержание алкина составляет менее 5 ppm; (3) стадию абсорбции и сепарации, при которой рафинированный газ крекинга, полученный в стадии (2), поступает поочередно в колонну предыдущего удаления этилена, абсорбер этилена, деметанизатор и дефлегматор этилена, в результате получаются этиленовый продукт полимеризационного уровня и фракция С4 и/или тот же самый газ поступает поочередно в колонну предыдущего удаления этилена, деэтанизатор, депропанизатор и колонну ректификации пропилена, в результате получается пропиленовый продукт полимеризационного уровня и продукт С5.
Наверх