Способ извлечения ванадия при конвертерном переделе природно-легированного чугуна

Изобретение относится к металлургии, в частности к переделу ванадиевого чугуна дуплекс-процессом. На первой стадии передела в процессе деванадации получают углеродистый полупродукт и ванадиевый шлак, на второй стадии осуществляют переработку углеродистого полупродукта во втором конвертере с получением стали. В процессе деванадации чугуна в расплав вводят окислитель-охладитель в виде агломерата, агломерата с окалиной и/или неофлюсованными ванадийсодержащими окатышами. При суммарном содержании кремния и титана в чугуне до 0,10% количество окислителя-охладителя равно 40-70 кг/т чугуна, а при увеличении суммарного содержания кремния и титана на каждые 0,01% количество окислителя-охладителя увеличивают на 0,5-1,5 кг/т чугуна. Использование изобретения обеспечивает глубокое извлечение ванадия из чугуна в шлак при различном химическом составе чугуна. 2 табл., 1 пр.

 

Изобретение относится к черной металлургии, а именно к способам передела ванадиевых чугунов в две стадии с получением на первой стадии ванадиевого шлака и углеродистого полупродукта, а на второй стадии в другом конвертере - стали.

Известны различные, применяемые в промышленных условиях, схемы переработки ванадиевых чугунов дуплекс-процессом, на первой стадии которого получают ванадиевый шлак и углеродистый полупродукт. Ванадий - важный для металлургии легирующий элемент имеет низкую активность и соответственно обладает слабым сродством к кислороду. Его активность значительно ниже активности углерода. По данной причине окисление ванадия и переход его в шлак возможны только при относительно низких температурах до начала активного окисления углерода.

Ванадиевый чугун содержит кремний - до 0,30%, титан - до 0,25%. При окислении этих элементов ввиду их значительно большей активности, чем у углерода и ванадия, выделяется 945800 и 935500 Дж тепловой энергии соответственно [2]. Для поглощения тепловыделения и понижения температуры металла при деванадации чугуна вводится охладитель.

Во всех описанных и применяющихся способах деванадации чугуна в качестве окислителей-охладителей используются: твердый чугун совместно с окалиной, металлический лом в количестве до 12% от массы чугуна как в холодном виде, так и нагретом до 400-700°С, окалину и/или окатыши.

Наиболее близким по технической сущности и достигаемому результату к заявляемому способу является способ передела ванадиевого чугуна дуплекс-процессом, включающий деванадацию чугуна с использованием в качестве окислителя-охладителя агломерата, окалины и/или неофлюсованных окатышей, агломерата и окалины, агломерата и неофлюсованных окатышей [1].

Данный способ обеспечивает деванадацию чугуна. Расход окислителя-охладителя определяется в зависимости от содержания кремния в чугуне. Как уже отмечено, тепловой эффект реакции окисления титана идентичен таковому при окислении кремния. Содержание титана в чугуне при одном и том же содержании кремния различное. По данной причине расчет количества охладителя-окислителя, исходя из содержания кремния, не дает стабильных результатов по извлечению ванадия из чугуна в шлак. В результате наблюдаются значительные колебания по содержанию остаточного ванадия в углеродистом полупродукте, и соответственно, коэффициента ошлакования ванадия.

Таким образом, применение окалины, и/или агломерата, и/или неофлюсованных ванадийсодержащих окатышей в качестве окислителя-охладителя в зависимости только от содержания кремния в ванадиевом чугуне не обеспечивает стабильное глубокое извлечение ванадия из чугуна, что является существенным недостатком данного способа переработки ванадиевого чугуна.

Известен способ передела ванадийсодержащих чугунов вводом на завершающей стадии накопления ванадиевого шлака в качестве окислителей-охладителей шлака моно-процесса и стального шлака дуплекс-процесса [3]. Недостатком данного способа является наличие СаО до 45% в предлагаемых добавках, что не обеспечит стабильное выполнение по ограничению содержания СаО в ванадиевом шлаке не более 3%.

Поставленная задача стабильного извлечения ванадия из чугуна различного химического состава достигается вводом в расплав в качестве окислителя-охладителя

агломерата следующего состава: содержание железа 56-66%;

оксида кальция CaO до 3%,

окалины следующего состава: содержание железа 60-67%;

оксида кальция СаО до 0,7%,

неофлюсованных окатышей с содержанием железа 60-62%;

оксида кальция СаО до 3%

или смеси из этих материалов в количестве, зависящем от суммарного содержания кремния и титана в чугуне.

Расход окислителей-охладителей при суммарном содержании кремния и титана до 0,10% должен быть от 40 до 70 кг/т чугуна. При увеличении суммарного содержания кремния и титана количество вводимой окалины и/или окатышей увеличивается на 0,5-1,5 кг/т чугуна на каждые 0,01% суммы титана и кремния. При вводе меньшего количества окислителя-охладителя не будут обеспечены температурные условия окисления ванадия, а при большем количестве вводимого окислителя-охладителя произойдет переохлаждение расплава с невозможностью дальнейшей переработки углеродистого полупродукта.

Пример передела ванадиевого чугуна дуплекс-процессом:

производят заливку ванадиевого чугуна в конвертер и его деванадацию путем продувки окислительным газом с присадкой окислителей-охладителей с целью получения углеродистого полупродукта и ванадиевого шлака. При этом в качестве окислителей-охладителей используют агломерат, агломерат с окалиной и/или неофлюсованными ванадийсодержащими окатышами в количестве, зависящем от суммарного содержания кремния и титана в чугуне:

при суммарном содержании кремния и титана в чугуне до 0,10% количество окислителя-охладителя 40-70 кг/т чугуна;

при увеличении суммарного содержания кремния и титана на каждые 0,01% количество окислителя-охладителя увеличивают на 0,5-1,5 кг/т чугуна. Подвергали переработке ванадиевый чугун, содержащий, %:

углерод С 4,5-4,8;
ванадий V 0,40-0,50;
кремний Si 0,04-0,20;
титан Ti 0,07-0,10;
марганец Mn 0,28-0,35;
хром Сr 0,05; Сu 0,01;
фосфор Р 0,04;
сера S 0,022,

имеющий температуру 1280-1305°С. Интенсивность подачи кислорода во время продувки находилась в пределах 320-350 нм3/мин.

Данные по результатам опытных плавок, произведенных по предлагаемой технологии и сравнительных плавок по существующей технологии предоставлены в табл.1, и табл.2.

Из представленных таблиц следует, что по технологии заявляемого способа коэффициент ошлакования ванадия составляет 92,4% при 88,8% по используемой технологии. Повышение коэффициента ошлакования ванадия значительно снижает его потери при дальнейшей переработке полупродукта, т.к. при продувке полупродукта на сталь весь имеющийся в нем ванадий переходит в шлак и отправляется в отвал.

Сравнительный анализ заявляемого технического решения и способа-прототипа показывает, что предлагаемый способ гарантирует стабильное качество товарного ванадиевого шлака, обеспечивает повышение извлечения ванадия из чугуна в шлак, уменьшает экологическую нагрузку, обеспечивает строгое выполнение заказов на сталях с ограниченным содержанием ванадия.

Данные преимущества предлагаемого способа переработки ванадиевого чугуна достигаются с учетом суммарного содержания кремния и титана в чугуне, являющееся главным заявляемым настоящей заявкой элементом способа извлечения ванадия при конвертерном переделе ванадиевого чугуна дуплекс-процессом.

Анализ патентов и научно-технической информации подтвердил, что заявляемая технология актуальна и соответствует критериям "новизна" и "изобретательский уровень", поскольку существенные признаки не встречаются в анализируемых источниках информации. Результаты опытного опробования, приведенные в табл.1 и табл.2, доказывают промышленную применимость заявляемого способа.

Предлагаемые параметры установлены экспериментальным путем при переделе ванадиевого чугуна в 160-тонных конвертерах с верхним кислородным дутьем с получением на первой стадии (деванадации) ванадиевого шлака и углеродистого полупродукта, а на второй стадии в другом конвертере - сталь.

Источники информации

1. RU 2201968 C2, C21C 5/28, 10.04.2003.

2. В.А.Кудрин «Теория и технология производства стали», издательство «Мир», 2003 г., стр.74.

3. Патент 2371483 "Способ переработки ванадийсодержащих чугунов", приоритет 30.03.2007.

Извлечение ванадия из чугуна в шлак в опытных плавках
Таблица 1
№ п/п Si чуг, % Ti чуг, % Расход охладителя, т V остаточный, % V чуг, % Степень ошлакования, %*
1 0,07 0,04 9,2 0,03 0,42 92,8
2 0,09 0,10 10,3 0,03 0,43 93,0
3 0,08 0,07 9,7 0,03 0,42 92,8
4 0,07 0,11 9,6 0,03 0,45 93,3
5 0,07 0,07 9,3 0,03 0,43 93,0
6 0,09 0,07 9,4 0,03 0,47 93,6
7 0,06 0,05 9,1 0,04 0,44 90,9
8 0,08 0,07 9,7 0,04 0,43 90,6
9 0,06 0,09 9,7 0,04 0,45 91,1
10 0,09 0,10 10,3 0,03 0,43 93,0
Средние значения 0,033 92,4
* Примечание - степень ошлакования=(Vчуг-Vп/п)/Vчуг
Степень извлечения ванадия из чугуна в шлак в сравнительных плавках
Таблица 2
№ п/п Si чуг, % Расход окалины, т V остаточный, % V чуг, % Степень ошлакования, %
1 0,14 12,0 0,03 0,43 93,0
2 0,08 7,0 0,05 0,42 88,0
3 0,11 8,5 0,07 0,46 84,7
4 0,08 6,8 0,06 0,42 85,7
5 0,14 13,2 0,03 0,44 93,2
6 0,10 9,7 0,04 0,41 90,2
7 0,11 7,0 0,07 0,43 83,7
8 0,13 11,8 0,04 0,42 90,4
9 0,07 7,0 0,09 0,43 79,0
10 0,15 12,1 0,03 0,43 93,0
Средние значения 0,051 88,8

Способ передела ванадиевого чугуна дуплекс-процессом, включающий на первой стадии заливку ванадиевого чугуна в конвертер и его деванадацию путем продувки окислительным газом с присадкой окислителя-охладителя с получением углеродистого полупродукта и ванадиевого шлака, а на второй стадии - переработку углеродистого полупродукта во втором конвертере с получением стали, отличающийся тем, что в качестве окислителя-охладителя используют агломерат, агломерат с окалиной и/или неофлюсованными ванадийсодержащими окатышами в количестве, зависящем от суммарного содержания кремния и титана в чугуне, при этом при суммарном содержании кремния и титана в чугуне до 0,10% количество окислителя-охладителя равно 40-70 кг/т чугуна, а при увеличении суммарного содержания кремния и титана на каждые 0,01% количество окислителя-охладителя увеличивают на 0,5-1,5 кг/т чугуна.



 

Похожие патенты:

Изобретение относится к черной металлургии, в частности к способам выплавки стали. .

Изобретение относится к области черной металлургии и может быть использовано при выплавке стали в конвертере, в том числе в конвертере с комбинированной продувкой расплава.

Изобретение относится к области металлургии, в частности к производству стали. .
Изобретение относится к черной металлургии, в частности к производству ванадиевого шлака и легированной ванадием стали. .
Изобретение относится к черной металлургии, конкретнее к способам выплавки стали в кислородных конвертерах. .
Изобретение относится к черной металлургии, конкретнее к способам горячего ремонта футеровки сталеплавильных агрегатов. .
Изобретение относится к черной металлургии, конкретнее к способам выплавки стали в кислородных конвертерах. .

Изобретение относится к области черной металлургии, в частности к выплавке стали в кислородном конвертере. .
Изобретение относится к металлургии, конкретнее, к процессам выплавки стали в конвертере. .

Изобретение относится к сталеплавильному производству, а именно к способу выплавки стали в кислородном конверторе, которое может быть использовано для повышения качества металла.

Изобретение относится к области металлургии, в частности для производства стали в кислородном конвертере
Изобретение относится к черной металлургии, конкретнее к выплавке стали в конвертере
Изобретение относится к черной металлургии, в частности к способу выплавки стали в кислородном конвертере
Изобретение относится к области черной металлургии, в частности к конвертерной переработке ванадийсодержащего чугуна
Изобретение относится к черной металлургии, а в частности к способу производства качественных сталей

Изобретение относится к области металлургии, в частности к способу получения нержавеющей стали в конвертере. Способ включает введение вспенивающего материала между слоем шлака, образовавшегося в результате окислительного рафинирования в конвертере, и расплавленным металлом в виде смеси из оксида металла или носителя железа, углерода и связующего материала в виде гранул или брикетов. При введении вспенивающего материала регулируют количество гранул или брикетов в диапазоне между 2-30 кг на тонну расплавленного металл в минуту с обеспечением получения заданной высоты вспененного шлака, которую поддерживают в течение заранее определенного времени. Распределение добавляемого вспенивающего материала производят послойно и с расходом на единицу поверхности, который составляет между 1-5 кг/м2/минуту. Использование изобретения обеспечивает улучшение энергетического баланса плавки. 3 з.п. ф-лы, 1 ил.

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали. Способ включает продувку расплава кислородом, выпуск расплава в ковш, наводку покровного шлак в ковше, обработку расплава в вакууматоре. За 1-3 минуты до окончания продувки замеряют температуру расплава, определяют содержание углерода по ликвидусу и на основании полученных данных определяют содержание углерода в расплаве, соответствующее окончанию продувки расплава кислородом. После окончания продувки на дно ковша подают прокаленные ферросплавы с содержанием алюминия более 0,05% и титана более 0,1% и через 1-1,5 минуты после окончания продувки осуществляют выпуск расплава из конвертера в ковш. По ходу выпуска расплава подают прокаленные ферросплавы с содержанием алюминия менее 0,05% и титана менее 0,1%. В конце выпуска расплава в ковше наводят основной покровный шлак. Перед обработкой расплава в вакууматоре покровный шлак раскисляют в ковше кремнийсодержащими ферросплавами фракцией 0-5 мм в количестве 0,3-0,8 кг/т, при этом при обработке расплава в вакууматоре для окончательного раскисления и модифицирования расплава присаживают Fe-Si-Ba с содержанием бария 15-35%. Использование изобретения обеспечивает высокую эксплуатационную стойкость рельсов. 2 з.п. ф-лы, 2 ил., 2 табл.
Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали в кислородном конвертере. Способ включает загрузку в конвертер твердых шихтовых материалов, заливку жидкого чугуна, продувку расплава кислородом через фурму. При этом на днище конвертера оставляют шлак предыдущей плавки, на него присаживают известь и магнийсодержащие материалы. После заливки чугуна и начала продувки в течение 5-6 мин в конвертер присаживают известь и железорудные материалы. Продувку кислородом ведут при положении фурмы на 250-350 мм выше рабочего положения в течение 7,5-9 мин. Затем продувку прекращают и осуществляют промежуточное скачивание шлака. После скачивания шлака возобновляют продувку кислородом, присаживают известь, железорудные материалы и плавиковый шпат. За 2-3 мин до окончания продувки железорудные материалы подают несколькими порциями не более 1,0-1,5 кг/т. В конце выпуска расплава наводят покровный шлак присадкой извести и плавикового шпата. Использование изобретения обеспечивает высокую эксплуатационную стойкость рельсов. 2 з.п. ф-лы.

Изобретение относится к области черной металлургии, в частности к производству коррозионностойкой стали с внепечной обработкой и разливкой на установке непрерывной разливки. В способе осуществляют выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш, рафинирование стали в процессе выпуска и доводки на установке печь-ковш. Во время выпуска в ковш присаживают флюс в количестве 4-10 кг/т стали, содержащий 40-85% Al2O3 и 2,0-12,0% СаО, алюминий в количестве 1,0-1,9 кг/т стали, известь в количестве 5-12 кг/т стали, кремний и марганецсодержащие ферросплавы в количестве 5-10 кг/т стали, во время доводки на установке печь-ковш на шлак присаживают алюминиевую сечку в количестве 0,3-2,0 кг/т стали, а в металл вводят кальцийсодержащие материалы из расчета 0,05-0,2 кг кальция на тонну стали. Во время выпуска отношение СаО/Al2O3 в шлаке должно составлять менее 3,5, а во время доводки на установке печь-ковш в металл вводят карбид кремния в количестве не более 1,2 кг/т стали. Изобретение позволяет повысить чистоту стали по коррозионноактивным неметаллическим включениям для исключения образования и развития локальной коррозии и увеличения эксплуатационной стойкости труб. 2 з.п. ф-лы, 1 табл.
Способ изготовления аустенитной нержавеющей стали из латеритной никелевой руды и хромитовой руды включает определение содержания никеля в латеритной никелевой руде. Затем ведут переработку латеритной никелевой руды в никельсодержащий предшественник на основе определения содержания никеля и получение расплавленного феррохрома из хромитовой руды. Далее осуществляют подачу никельсодержащего предшественника и горячую загрузку расплавленного феррохрома в конвертер для получения расплавленной нержавеющей стали. Затем загружают полученную расплавленную нержавеющую аустенитную сталь в машину непрерывного литья для получения сляба стали. Техническим результатом является повышение экономичности процесса изготовления аустенитной нержавеющей стали из латеритной никелевой руды и хромитовой руды. 3 н. и 15 з.п. ф-лы.
Наверх